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General theory of relativity 1

~ GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (gµν) of signa-
ture (1, 3).

~ There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

◦ sphere S3 (of constant positive sectional curvature),
◦ flat space R3 (of curvature equal 0),
◦ hyperbolic space H3 (of constant negative sectional cutvature).

~ Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity 1

~ GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (gµν) of signa-
ture (1, 3).

~ There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

◦ sphere S3 (of constant positive sectional curvature),
◦ flat space R3 (of curvature equal 0),
◦ hyperbolic space H3 (of constant negative sectional cutvature).

~ Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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General theory of relativity 2

~ GTR is based on Einstein-Hilbert action:

S =

∫ ( R − 2Λ

16πG c4 + Lm

)√
−g d4x

where R is scalar curvature, g = det(gµν) is determinant of metric ten-
sor, Λ is cosmological constant and Lm is Lagrangian of matter.

~ The variation of the action S we obtain equations of motion:

Rµν −
1
2

R gµν + Λ gµν = 8πG Tµν , c = 1 (2)

where Tµν is the energy momentum tensor, gµν is metric tensor, Rµν is
Ricci tensor and R is scalar curvature.

~ The energy momentum tensor for ideal fluid (matter in cosmology) is

T = diag(−ρ g00, g11p, g22p, g33p), (3)

where ρ is energy density and p is pressure.
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General theory of relativity 3

~ Now, Einstein equation implies Friedmann equations

ä
a

= −4πG
3

(ρ+ 3p) +
Λ

3
, H2 =

(
ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ

3
.

~ Hubble parameter describes the expansion of the Universe

H =
ȧ
a
. (4)

~ Despite to the great success of GRT, observational discoveries of 20th
century imply that they could not be explained by GTR without additional
matter.

~ Problem of Bing Bang singularity.
~ It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian L

L =
R − 2Λ

16πG
+ Lm, c = 1.
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ȧ
a
. (4)

~ Despite to the great success of GRT, observational discoveries of 20th
century imply that they could not be explained by GTR without additional
matter.

~ Problem of Bing Bang singularity.
~ It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian L

L =
R − 2Λ

16πG
+ Lm, c = 1.
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ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ

3
.

~ Hubble parameter describes the expansion of the Universe

H =
ȧ
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Dark matter and energy 4

Dark matter and energy

~ Dark matter is responsible for orbital speeds in galaxies, and dark
energy is responsible for accelerated expansion of the Universe.

~ If Einstein theory of gravity can be applied to the whole Universe then
the Universe contains about 5% of ordinary matter, 27% of dark matter

and 68% of dark energy.

~ It means that 95% of total matter, or energy, represents dark side of the
Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

~ The validity of General Relativity on cosmological scale is not confirmed.

~ Dark matter and dark energy are not yet detected in the laboratory
experiments.
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Modification of Einstein theory of gravity 5

Different approaches to modification of Einstein theory of gravity

~ Einstein General Theory of Relativity

From action

S =

∫ (R − 2Λ

16πG
+ Lm

)√
−g d4x

using variational methods we get field equations

Rµν −
1
2

R gµν + Λgµν = 8πGTµν , c = 1.

where Tµν is stress-energy tensor, gµν is the metric tensor, Rµν is Ricci
tensor and R
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Modification of Einstein theory of gravity 6

� First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

S =

∫ (R − 2Λ

16πG
+ Lm

)√
−gd4x

modification

R −→ f (R,Λ,Rµν ,Rα
µβν ,�, . . . ), � = ∇µ∇µ =

1√
−g

∂µ
√
−g gµν ∂ν

Gauss-Bonnet invariant

G = R2 − 4 RµνRµν + Rαβµν Rαβµν
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Modification of Einstein theory of gravity 7

� f (R) modified gravity

S =

∫ ( f (R)

16πG
+ Lm

)√
−g d4x

� Gauss-Bonnet modified gravity

S =

∫ (R + αG
16πG

+ Lm

)√
−g d4x

� nonlocal modified gravity

S =

∫ (F (R,Rµν ,Rα
µβν ,�, ...)

16πG
+ Lm

)√
−g d4x
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Nonlocal modified gravity 8

� Under nonlocal modification of gravity we understand replacement of the
scalar curvature R in the Einstein-Hilbert action by a suitable function
F (R,�), where � = ∇µ∇µ is d’Alembert operator and ∇µ denotes the
covariant derivative

� Let M be a four-dimensional pseudo-Riemannian manifold with metric
(gµν) of signature (1,3). We consider a class of nonlocal gravity models
without matter, given by the following action

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

where F(�) =
∞∑

n=0

fn �n is an analytic function of �, and Λ is cosmolo-

gical constant.

� In the case of FRW metric the scalar curvature and d’Alambert operator
are given by

R =
6
(
a ä + ȧ2 + k

)
a2 , �R = −R̈ − 3 H Ṙ, H =

ȧ
a
.
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ȧ
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a ä + ȧ2 + k

)
a2 , �R = −R̈ − 3 H Ṙ, H =
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Equations of motion 9

� For calculating variation of the action, δS =
1

16πG
δS0 + δS1, we need

the following

Lemma 1. For any two scalar functions G and H hold∫
M
Hδ(

√
−g) d4x = −1

2

∫
M

gµνHδgµν
√
−g d4x ,∫

M
HδR

√
−g d4x =

∫
M

(RµνH− KµνH) δgµν
√
−g d4x ,∫

M
Hδ(F(�)G)

√
−g d4x =

∫
M

(Rµν − Kµν)
(
G′F(�)H

)
δgµν

√
−g d4x

+
∞∑

n=1

fn
2

n−1∑
l=0

∫
M

Sµν(�lH,�n−1−lG)δgµν
√
−g d4x .

where

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,

Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Equations of motion 9

� For calculating variation of the action, δS =
1

16πG
δS0 + δS1, we need

the following

Lemma 1. For any two scalar functions G and H hold∫
M
Hδ(

√
−g) d4x = −1

2

∫
M

gµνHδgµν
√
−g d4x ,∫

M
HδR

√
−g d4x =

∫
M

(RµνH− KµνH) δgµν
√
−g d4x ,∫

M
Hδ(F(�)G)

√
−g d4x =

∫
M

(Rµν − Kµν)
(
G′F(�)H

)
δgµν

√
−g d4x

+
∞∑

n=1

fn
2

n−1∑
l=0

∫
M

Sµν(�lH,�n−1−lG)δgµν
√
−g d4x .

where

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,

Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Equations of motion 9

� For calculating variation of the action, δS =
1

16πG
δS0 + δS1, we need

the following

Lemma 1. For any two scalar functions G and H hold∫
M
Hδ(

√
−g) d4x = −1

2

∫
M

gµνHδgµν
√
−g d4x ,∫

M
HδR

√
−g d4x =

∫
M

(RµνH− KµνH) δgµν
√
−g d4x ,∫

M
Hδ(F(�)G)

√
−g d4x =

∫
M

(Rµν − Kµν)
(
G′F(�)H

)
δgµν

√
−g d4x

+
∞∑

n=1

fn
2

n−1∑
l=0

∫
M

Sµν(�lH,�n−1−lG)δgµν
√
−g d4x .

where

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,
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Equations of motion 10

� The action S0 is Einstein-Hilbert action without matter its variation is

δS0 =

∫
M

Gµν

√
−gδgµν d4x + Λ

∫
M

gµν

√
−gδgµν d4x , (5)

where Gµν = Rµν − 1
2 Rgµν is Einstein tensor.

� Using previous theorem we find the variation of S1,

δS1 = −1
2

∫
M

gµνH(R)F(�)G(R)δgµν
√
−g d4x

+

∫
M

(
RµνW − KµνW +

1
2

Ωµν

)
δgµν

√
−g d4x . (6)

� Since, S =
1

16πG
S0 + S1, finally we get equations of motion (EOM).
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Equations of motion 11

Theorem 2 (EOM) The equations of motion for system given by S are:

G̃µν = 0, (7)

where

G̃µν =
Gµν + Λgµν

16πG
− 1

2
gµνH(R)F(�)G(R) + RµνW − KµνW +

1
2

Ωµν ,

Ωµν =
∞∑

n=1

fn
n−1∑
l=0

Sµν

(
�lH(R),�n−1−lG(R)

)
,

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,

W = H′(R)F(�)G(R) + G′(R)F(�)H(R).

~ Let us note that ∇µG̃µν = 0.

~ EOM are invariant on the replacement of functions G and H in S.
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Equations of motion (EOM) 12

~ If we take
~ H(R) = G(R) and

~ G(R) be an eigenfunction of the corresponding d’Alembert-Beltrami �
operator: �G(R) = q G(R), and consequently F(�)G(R) = F(q)G(R) ,

we obtain

Gµν + Λgµν −
gµν

2
F(q)G2 + 2F(q)(Rµν − Kµν)GG′ (8)

+
1
2
F ′(q)Sµν(G,G) = 0.

~ If we suppose that the manifold M is endowed with FRW metric, then we
have just two linearly independent equations: trace and 00-equation.
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Models of Nonlocal gravity 13

~ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

for the following cases:

1. H(R) = R, G(R) = R,

2. H(R) = R−1, G(R) = R,

3. H(R) = Rp, G(R) = Rq ,

4. H(R) = (R + R0)m, G(R) = (R + R0)m,

5. R = const.
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Models of Nonlocal gravity 13

~ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

for the following cases:

1. H(R) = R, G(R) = R,

2. H(R) = R−1, G(R) = R,

3. H(R) = Rp, G(R) = Rq ,

4. H(R) = (R + R0)m, G(R) = (R + R0)m,

5. R = const.
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Earlier models 14

1. model H(R) = R, G(R) = R.
Using ansatz �R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = a0(σeλt + τe−λt ).

Solutions exist for all three values of parameter k = 0,±1, under certain
conditions on function F(�), and parameters σ, τ, λ,Λ, k .

Obtained results generalize known cases in literature: in the first case

a(t) = a0 cosh (
√

Λ
3 t), in the second and third case for k = 0 we obtain

de Sitter solution.

All obtained solutions satisfy ä(t) = λ2a(t) > 0, i.e. are consistent with
observational data.

2. model H(R) = R−1, G(R) = R.

Non-locality,R−1F(�)R, is invariant to transformation R −→ cR, c ∈ R∗.

there are cosmological solutions of form a(t) = a0|t − t0|α, in the case
k = 0, for α 6= 0, 1/2 and 3α ∈ 1 + 2N, in cases k 6= 0, for α = 1.

Case a(t) = |t − t0| for k = −1 corresponds to Milne’s model.
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3. model H(R) = Rp,G(R) = Rq , p ≥ q.

We considered case with scale factor in the form a(t) = a0 exp(− γ
12 t2)

For p = q = 1 there are infinite number of solutions, and constants γ and
Λ satisfy γ = −12Λ.

In other cases we proved existence of unique solution, for arbitrary
γ ∈ R. We explicitly found solutions for 1 ≤ q ≤ p ≤ 4.

4. model H(R) = (R + R0)m, G(R) = (R + R0)m.

We considered scale factor and ansatz of the form

a(t) = Atn exp(− γ

12
t2) and �(R + R0)m = r(R + R0)m.

Using this ansatz we obtined the followinf five solutions:

r = m γ, n = 0, R0 = γ, m = 1
2

r = m γ, n = 0, R0 = γ
3 , m = 1

r = m γ, n = 1
2 , R0 = 4

3 γ, m = 1

r = m γ, n = 1
2 , R0 = 3 γ, m = − 1

4

r = m γ, n = 2m+1
3 , R0 = 7

3 γ, m = 1
2 .
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4. model H(R) = (R + R0)m, G(R) = (R + R0)m.

In the case n = 0, m = 1
2 we found unique solution for arbitrary F( γ

2 )

and F ′( γ
2 ).

In the case n = 2
3 , m = 1

2 we found unique solution for F( γ
2 ) and

F ′( γ
2 ) which satisfy Λ = − 7

6γ.

In the case n = 1
2 , m = − 1

4 there is no solutions of EOM.

5. model R = const.

If R = R0 > 0, then there exist non-singlar solutions for all three
values of parameter k = 0,±1, which are bounced in the cases k = 0, 1.

If R = R0 = 0 then exists Milne’s solution a(t) = |t + σ
2 |.

If R = R0 < 0, then there exists non-trivial singular cyclic

solution a(t) =
√
−12
R0
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Special cosmological models 16a

~ Recently, we have considered classes of nonlocal gravity models with
cosmological constant Λ and without matter, given by

(M4) S =
1

16πG

∫
M

(
R − 2Λ + (R − 4Λ)F(�)(R − 4Λ)

)√
−g d4x ,

(MS) S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ

)√
−g d4x ,

where P(R) and Q(R) are some differentiable functions of R, while
F(�) =

∑+∞
n=1 fn�n +

∑+∞
n=1 f−n �−n, � = ∇µ∇µ = 1√

−g ∂µ (
√
−g gµν ∂ν)

is d’Alembert-Beltrami operator and Λ is cosmological constant.

~ The action (M4) is limit case od the action (MS) since: the expansion of
√

R − 2 Λ =
√
−2 Λ

√
1− R

2 Λ
where |R| � |2L|.

~ Linear approximation in R/2 Λ gives
√

R − 2 Λ =
√
−2 Λ (1− R

4 Λ
),

then the nonlocal term in (MS) becomes√
R − 2 ΛF(�)

√
R − 2 Λ ' − R

8 Λ
(R − 4 Λ)F(�) (R − 4 Λ),
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Special cosmological models 16a

~ Recently, we have considered classes of nonlocal gravity models with
cosmological constant Λ and without matter, given by

(M4) S =
1

16πG

∫
M

(
R − 2Λ + (R − 4Λ)F(�)(R − 4Λ)

)√
−g d4x ,

(MS) S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ

)√
−g d4x ,

where P(R) and Q(R) are some differentiable functions of R, while
F(�) =

∑+∞
n=1 fn�n +

∑+∞
n=1 f−n �−n, � = ∇µ∇µ = 1√

−g ∂µ (
√
−g gµν ∂ν)

is d’Alembert-Beltrami operator and Λ is cosmological constant.

~ The action (M4) is limit case od the action (MS) since: the expansion of
√

R − 2 Λ =
√
−2 Λ

√
1− R

2 Λ
where |R| � |2L|.

~ Linear approximation in R/2 Λ gives
√

R − 2 Λ =
√
−2 Λ (1− R

4 Λ
),

then the nonlocal term in (MS) becomes√
R − 2 ΛF(�)

√
R − 2 Λ ' − R

8 Λ
(R − 4 Λ)F(�) (R − 4 Λ),
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Model H(R) = G(R) =
√

R − 2Λ 17

~ Let us consider model (MS) in more details, so we

S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ

)√
−g d4x , (9)

where F(�) = 1 +
∑+∞

n=1 fn �n +
∑+∞

n=1 f−n �−n

~ It is a very special case since the EOM (8), for G(R) =
√

R − 2 Λ, is simpli-
fied to

(Gµν + Λgµν) (1 + F(q)) +
1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ) = 0, (10)

where we take q = ζΛ.

~ It is evident that EOM (10) are satisfied if F(q) = −1 and F ′(q) = 0.

~ One such nonlocal operator F(�) is

F(�) = 1 +
+∞∑
n=1

f̃n
[(�

q

)n
+
( q
�

)n]
= 1− 1

2e

(�
q

e
�
q +

q
�

e
q
�

)
, q 6= 0.
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1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ) = 0, (10)

where we take q = ζΛ.

~ It is evident that EOM (10) are satisfied if F(q) = −1 and F ′(q) = 0.

~ One such nonlocal operator F(�) is

F(�) = 1 +
+∞∑
n=1

f̃n
[(�

q

)n
+
( q
�

)n]
= 1− 1

2e

(�
q

e
�
q +

q
�

e
q
�

)
, q 6= 0.
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1. Cosmological solution in the flat Universe (k = 0)

1.1. Solutions of the form a(t) = A tn eγt2

~ There are two solutions:

a1(t) = A t
2
3 e

Λ
14 t2

, F(−
3
7

Λ) = −1, F ′(−
3
7

Λ) = 0,

a2(t) = A e
Λ
6 t2
, F(−Λ) = −1, F ′(−Λ) = 0.

1.2. New solutions of the form a(t) = (α eλt + β e−λt )γ

~ In this case for αβ 6= 0, R 6= 2Λ and q 6= 0 we have solutions if

γ =
2
3
, q =

3
8

Λ, λ = ±
√

3
8

Λ .

~ When αβ 6= 0, we have the following two special solutions:

a3(t) = A cosh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)
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a4(t) = A sinh
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8
Λ t
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)
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1. Cosmological solution in the flat Universe (k = 0)

1.3. New solutions of the form a(t) = (α sinλt + β cosλt)γ

~ For α 6= 0 and β 6= 0 there are only possibility for γ, γ = 2
3 . Taking β = ±α,

and A = α
2
3 , we have the following two solutions:

a5(t) = A
(

1 + sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a6(t) = A
(

1− sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.

~ For α = 0 or β = 0, we have also two cosmological solutions with γ = 2
3 :

a7(t) = A sin
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a8(t) = A cos
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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2. Cosmological solution in the open and closed Universe (k = ∓1)

2.1. Solutions of the form a(t) = A e±
√

Λ
6 t
, (k = ±1)

~ For α 6= 0, β = 0 or α = 0, β 6= 0 we have the following solution:

a9(t) = A e±
√

Λ
6 t
, k = ±1, F(

1
3

Λ) = −1, F ′(
1
3

Λ) = 0, Λ > 0.

2.2. New solutions of the form a(t) = (α eλt + β e−λt )γ , (k = ±1)

~ For α 6= 0, β 6= 0, R 6= 2Λ, q 6= 0 there are two following cosmological
solutions:

a10(t) = A cosh
1
2
(√2

3
Λ t
)
, k = ±1, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0,

a11(t) = A sinh
1
2
(√2

3
Λ t
)
, k = ±1, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0.
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a9(t) = A e±
√

Λ
6 t
, k = ±1, F(

1
3

Λ) = −1, F ′(
1
3

Λ) = 0, Λ > 0.

2.2. New solutions of the form a(t) = (α eλt + β e−λt )γ , (k = ±1)

~ For α 6= 0, β 6= 0, R 6= 2Λ, q 6= 0 there are two following cosmological
solutions:

a10(t) = A cosh
1
2
(√2

3
Λ t
)
, k = ±1, F
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3

Λ
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= −1, F ′
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3
Λ
)
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a11(t) = A sinh
1
2
(√2

3
Λ t
)
, k = ±1, F
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3

Λ
)

= −1, F ′
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3
Λ
)
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Model H(R) = G(R) =
√

R − 2Λ 20

2. Cosmological solution in the open and closed Universe (k = ∓1)

2.1. Solutions of the form a(t) = A e±
√

Λ
6 t
, (k = ±1)

~ For α 6= 0, β = 0 or α = 0, β 6= 0 we have the following solution:

a9(t) = A e±
√

Λ
6 t
, k = ±1, F(

1
3

Λ) = −1, F ′(
1
3

Λ) = 0, Λ > 0.

2.2. New solutions of the form a(t) = (α eλt + β e−λt )γ , (k = ±1)

~ For α 6= 0, β 6= 0, R 6= 2Λ, q 6= 0 there are two following cosmological
solutions:

a10(t) = A cosh
1
2
(√2

3
Λ t
)
, k = ±1, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0,

a11(t) = A sinh
1
2
(√2

3
Λ t
)
, k = ±1, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0.
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~ 1. Cosmological solution for a1(t) = A t
2
3 e

Λ
14 t2

, k = 0

~ The corresponding Hubble parameter , acceleration and the scalar
curvature are:

H1(t) =
ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,

ä1(t) =
(
− 2

9
1
t2 +

1
3

Λ +
1

49
Λ2t2

)
a1(t),

R1(t) =
4
3

1
t2 +

22
7

Λ +
12
49

Λ2t2,

~ Friedman equations gives

ρ̄(t) =
2t−2 + 9

98 Λ2t2 − 9
14 Λ

12πG
, p̄(t) = − Λ

56πG
(3

7
Λt2 − 1

)
, (11)

where ρ̄ and p̄ are analogs of the energy density and pressure of the
dark side of the universe, respectively. The corresponding equation of
state is p̄(t) = w̄(t) ρ̄(t).
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~ The expressions (11) implies that w̄(t)→ −1 when t →∞, what cor-
responds to an analog of Λ dark energy dominance in the standard
cosmological model.

~ It means that this nonlocal gravity model with cosmological solution

a(t) = A t
2
3 e

Λ
14 t2

describes some effects usually attributed to the dark
matter and dark energy.

~ This solution is invariant under transformation t → −t and singular at
cosmic time t = 0.

~ Let us recall, the second Friedman equation

H2 =
ȧ2

a2 =
8πG

3
ρ− k

a2 +
Λ

3
, (12)

where ρ is energy density in the standard model of cosmology.
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~ Then we can rewrite the previous equation as,

H2 =
ȧ2

a2 =
8πG

3
ρr +

8πG
3

ρm −
k
a2 +

Λ

3

=
8 CrπG

a4 +
8 CmπG

a3 − k
a2 +

Λ

3

~ It follows

H2

H2
0

=
Ωr

a4 +
Ωm

a3 +
Ωk

a2 + ΩΛ

~ Observational data obtained by Planck-2018 for the ΛCDM model:

t0 = (13.801± 0.024)× 109yr – age of the universe,

H(t0) = (67.40± 0.50) km/s/Mpc – Hubble parameter,

Ωm = 0.315± 0.007– matter density parameter,

ΩΛ = 0.685− Λ density parameter,

w0 = −1.03± 0.03– ratio of pressure to energy density.
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Predictions of the model and observational data 23

~ Then we can rewrite the previous equation as,

H2 =
ȧ2
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~ From,
H1(t) =

ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,

taking H1(t0) = H(t0) we calculate Λ1 = 1.05× 10−35s−2 that differs
from Λ = 3H2(t0) ΩΛ = 0.98× 10−35s−2 (by ΛCDM model).

~ We also computed

ä1(t0)/a1(t0) = 2.7× 10−36s−2

R(t0) = 4.5× 10−35s−2 and consequently

R(t0)− 2Λ = 2.4× 10−35s−2.

~ Replacing solution a1(t) with k = 0, Friedman equations give

ρ̄1(t) =
3

8πG

(
H2

1 (t)− Λ1

3

)
=

3
8πG

(4
9

t−2 − 1
7

Λ1 +
1

49
Λ2

1t2
)
,

p̄1(t) =
Λ1

56πG
(
1− 3

7
Λ1t2).
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ä1(t0)/a1(t0) = 2.7× 10−36s−2

R(t0) = 4.5× 10−35s−2 and consequently

R(t0)− 2Λ = 2.4× 10−35s−2.

~ Replacing solution a1(t) with k = 0, Friedman equations give

ρ̄1(t) =
3

8πG

(
H2

1 (t)− Λ1

3

)
=

3
8πG

(4
9

t−2 − 1
7

Λ1 +
1

49
Λ2

1t2
)
,

p̄1(t) =
Λ1

56πG
(
1− 3

7
Λ1t2).
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Predictions of the model and observational data 25

~ For t = t0, from previous formula, and from ΛCDM model we have

ρ̄1(t0) = 2.26× 10−30 g
cm3 ,

ρ(t0) =
3

8πG

(
H2

0 −
Λ

3

)
= 2.68× 10−30 g

cm3 .

~ Then, for vacuum energy density of background solution a1(t) and
ΛCDM model, we have

ρ(t0)− ρ̄1(t0) =
Λ1 − Λ

8πG
= ρΛ1 − ρΛ = 0.42× 10−30 g

cm3 ,

~ Critical energy density: ρc =
3 H2

0

8πG
= 8.51× 10−30 g

cm3

~ and consequently,

ΩΛ1 =
ρΛ1

ρc
= 0.734, ΩΛ =

ρΛ

ρc
= 0.685, ∆ΩΛ = ΩΛ1 − ΩΛ = 0.049, (13)

Ωm1 =
ρ̄1(t0)

ρc
= 0.266, Ωm =

ρ(t0)

ρc
= 0.315, ∆Ωm = Ωm − Ωm1 = 0.049. (14)
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Predictions of the model and observational data 25

~ For t = t0, from previous formula, and from ΛCDM model we have

ρ̄1(t0) = 2.26× 10−30 g
cm3 ,

ρ(t0) =
3

8πG

(
H2

0 −
Λ

3

)
= 2.68× 10−30 g

cm3 .

~ Then, for vacuum energy density of background solution a1(t) and
ΛCDM model, we have

ρ(t0)− ρ̄1(t0) =
Λ1 − Λ

8πG
= ρΛ1 − ρΛ = 0.42× 10−30 g

cm3 ,

~ Critical energy density: ρc =
3 H2

0

8πG
= 8.51× 10−30 g

cm3

~ and consequently,

ΩΛ1 =
ρΛ1

ρc
= 0.734, ΩΛ =

ρΛ

ρc
= 0.685, ∆ΩΛ = ΩΛ1 − ΩΛ = 0.049, (13)

Ωm1 =
ρ̄1(t0)

ρc
= 0.266, Ωm =

ρ(t0)

ρc
= 0.315, ∆Ωm = Ωm − Ωm1 = 0.049. (14)
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Predictions of the model and observational data 26

~ According to (13) and (14), we obtain that Ωm1 = 26, 6% corresponds to
dark matter and ∆Ωm = ∆ΩΛ = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

~ Efective presure. At the beginning, p̄1(0) = Λ1
56πG > 0, then decreases

and equals zero at t =
√

7
3Λ1

= 4.71× 1017 s = 14, 917× 109yr .

~ According to (11), we have parameter w̄1(t) = p̄1(t)
ρ̄1(t) which has future behavior

in agreement with standard model of cosmology, i.e. w̄1(t →∞)→ −1.

~ Note that the Hubble parameter has minimum at tmin = 21.1× 109yr and it is
H1(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time tacc = 7.84× 109yr when, ä = 0.
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Predictions of the model and observational data 26

~ According to (13) and (14), we obtain that Ωm1 = 26, 6% corresponds to
dark matter and ∆Ωm = ∆ΩΛ = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

~ Efective presure. At the beginning, p̄1(0) = Λ1
56πG > 0, then decreases

and equals zero at t =
√

7
3Λ1

= 4.71× 1017 s = 14, 917× 109yr .

~ According to (11), we have parameter w̄1(t) = p̄1(t)
ρ̄1(t) which has future behavior

in agreement with standard model of cosmology, i.e. w̄1(t →∞)→ −1.

~ Note that the Hubble parameter has minimum at tmin = 21.1× 109yr and it is
H1(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time tacc = 7.84× 109yr when, ä = 0.
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Schwarzschild-de Sitter (SdS) metric 27

~ We want to investigate our model outside the spherically symmetric
massive body - it is natural to consider a generalization of the Schwarz-
schild-de Sitter (SdS) metric starting from the standard Schwarzschild
expression,

ds2 = −A(r)dt2 + B(r)dr 2 + r 2dθ2 + r 2 sin2 θ dϕ2. SdS metric-GC (15)

~ The corresponding scalar curvature R of above metric (15)

R =
2
r2
−

2
r2B(r)

−
2A′(r)

rA(r)B(r)
+

A′(r)2

2A(r)2B(r)
+

2B′(r)

rB2(r)
+

A′(r)B′(r)

2A(r)B(r)2
−

A′′(r)

A(r)B(r)
(16)

~ We need to solve the equation

�u(r) =
1

B(r)

(
4u(r) +

1
2

(
A′(r)

A(r)
−

B′(r)

B(r)

)
u′(r)

)
= q u(r), u(r) =

√
R − 2Λ , (17)

where

4 =
1
r2

∂

∂r

[
r2 ∂

∂r

]
=

∂2

∂r2
+

2
r
∂

∂r
(18)

is the Laplace operator in spherical coordinate r .
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Schwarzschild-de Sitter (SdS) metric 28

~ Local de Sitter case, with static spherically symmetric body of mass M,
the Schwarzschild-de Sitter metric (15) is

A(r) = A0(r) = 1−
µ

r
−

Λr2

3
, B(r) = B0(r) =

1
A0(r)

, µ =
2GM

c2
. (19)

~ It makes sense to suppose that solution of equation (17) is of the form

A(r) = A0(r)− α(r), B(r) =
1

A0(r)− β(r)
, (20)

where α(r) and β(r) are some dimensionless functions. When
ζ = q/Λ→ 0, then nonlocal operator nonlocal de Sitter

√
dS gravity

model (9) becomes local.

~ It must be that A(r)→ A0(r) and B(r)→ B0(r) when ζ → 0, that is
α(r)→ 0 and β(r)→ 0 as ζ → 0.

~ After replacing A = A0 − α(r) and B = 1
A0−β(r)

in scalar curvature R and

in operator � of equation (17), we obtain
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A(r) = A0(r) = 1−
µ

r
−

Λr2

3
, B(r) = B0(r) =

1
A0(r)

, µ =
2GM

c2
. (19)

~ It makes sense to suppose that solution of equation (17) is of the form

A(r) = A0(r)− α(r), B(r) =
1

A0(r)− β(r)
, (20)

where α(r) and β(r) are some dimensionless functions. When
ζ = q/Λ→ 0, then nonlocal operator nonlocal de Sitter

√
dS gravity

model (9) becomes local.

~ It must be that A(r)→ A0(r) and B(r)→ B0(r) when ζ → 0, that is
α(r)→ 0 and β(r)→ 0 as ζ → 0.

~ After replacing A = A0 − α(r) and B = 1
A0−β(r)

in scalar curvature R and

in operator � of equation (17), we obtain
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Schwarzschild-de Sitter (SdS) metric 28

~ Local de Sitter case, with static spherically symmetric body of mass M,
the Schwarzschild-de Sitter metric (15) is

A(r) = A0(r) = 1−
µ

r
−

Λr2

3
, B(r) = B0(r) =

1
A0(r)

, µ =
2GM

c2
. (19)

~ It makes sense to suppose that solution of equation (17) is of the form

A(r) = A0(r)− α(r), B(r) =
1

A0(r)− β(r)
, (20)

where α(r) and β(r) are some dimensionless functions. When
ζ = q/Λ→ 0, then nonlocal operator nonlocal de Sitter

√
dS gravity

model (9) becomes local.

~ It must be that A(r)→ A0(r) and B(r)→ B0(r) when ζ → 0, that is
α(r)→ 0 and β(r)→ 0 as ζ → 0.

~ After replacing A = A0 − α(r) and B = 1
A0−β(r)

in scalar curvature R and

in operator � of equation (17), we obtain
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R =
2
r2

(1− A0 + β) + 2
A0 − β
A0 − α

(A′0 − α
′)
(1

4
A′0 − α

′

A0 − α
−

1
r

)
−2(A′0 − β

′)
(1

4
A′0 − α

′

A0 − α
+

1
r

)
−

A0 − β
A0 − α

(A′′0 − α
′′), (21)

�u = (A0 − β)4u +
1
2

[A0 − β
A0 − α

(A′0 − α
′) + A′0 − β

′
]
u′ = qu, u =

√
R − 2Λ (22)

~ If we substitute expressions (21) and (22) in eigenvalue problem for �

operator, we will get a differential equation in α(r) and β(r). Since, in the

local case holds B0(r) = 1/A0(r), there is a sense to take B(r) = 1/A(r)

in the nonlocal case, it means β(r) = α(r), and it yields:

R(r) =
1
r2

[
2− 2A(r)− 4rA′(r)− r2A′′(r)

]
=

1
r2

∂2

∂r2

[
r2(1− A(r)

)]
, (23)

�u(r) = A(r) u′′(r) + (A′(r) +
2
r

A(r)) u′(r) =
1
r2

∂

∂r

[
r2A(r)

∂u
∂r

]
. (24)
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~ If we put β(r) = α(r) in (21) and (22), we get

R = 4Λ +
2α
r 2 +

4α′

r
+ α′′, (25)

�u = (A0 − α)4u + (A′0 − α′)u′ = qu, u =
√

R − 2Λ. (26)

~ We want to find function α(r), and we use substitution of

u =
√

R − 2Λ =

√
2Λ +

2α
r 2 +

4α′

r
+ α′′ (27)

into equation (26).

~ One gets an ordinary nonlinear differential equation of the fourth order,

since it is nonlinear, it is a very difficult task to find the corresponding

exact solution. In the sequel of this lecture we will turn our attention to

the corresponding linear differential equation: it means we will limit our-

selves to studying the Schwarzshild-de Sitter metric in weak gravity

field approximation.
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~ It is like considering gravity field far from a massive body, so � can be

replaced by the Laplacian 4 in equation (26). In such case we will take

A(r) ≈ 1 in (26), that is

A(r) = A0(r)− α(r) = 1− µ

r
− Λr 2

3
− α(r) ≈ 1, (28)

i.e. if the following is satisfied,

µ

r
� 1,

Λr 2

3
� 1, |α(r)| � 1. (29)

~ Applying approximation (28) in (26), we get the following simple equation

linear in u(r):

4u = qu, that is
∂2u
∂r 2 +

2
r
∂u
∂r

= qu, u =
√

R − 2Λ. (30)
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~ After the linearization of
√

R − 2Λ, we get

(R − 4Λ)′′ +
2
r

(R − 4Λ)′ = q(R − 4Λ), (31)

and using (25) we obtain the following linear differential equation,

α′′′′ +
6
r
α′′′ +

2
r 2α

′′ − 4
r 3α

′ +
4
r 4α = q(α′′ +

4
r
α′ +

2
r 2α). (32)

~ Previous equation (32) has a general solution for q = ζΛ,

α(r) =
C1

r
+

C2

r 2 + C3e−
√

qr

(
1
qr

+
2

q
3
2 r 2

)
+ C4e

√
qr

(
1
qr
− 2

q
3
2 r 2

)
. (33)

~ There are four constants (C1 − C4) and we want to chose them such that

the appropriate particular solution for α(r) has some physical meaning,

i.e. α(r)→ 0 when ζ → 0.
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(R − 4Λ)′′ +
2
r

(R − 4Λ)′ = q(R − 4Λ), (31)

and using (25) we obtain the following linear differential equation,

α′′′′ +
6
r
α′′′ +

2
r 2α

′′ − 4
r 3α

′ +
4
r 4α = q(α′′ +

4
r
α′ +

2
r 2α). (32)

~ Previous equation (32) has a general solution for q = ζΛ,

α(r) =
C1

r
+

C2

r 2 + C3e−
√

qr

(
1
qr

+
2

q
3
2 r 2

)
+ C4e

√
qr

(
1
qr
− 2

q
3
2 r 2

)
. (33)

~ There are four constants (C1 − C4) and we want to chose them such that

the appropriate particular solution for α(r) has some physical meaning,

i.e. α(r)→ 0 when ζ → 0.
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~ One such choice is: C1 = −δ/√q, C2 = 2δ/q, C3 = −δ√q; C4 = 0.

~ C4 has to vanish, since we have exclude term with e
√

qr in (33).

~ In this case solution for α(r), is

α(r) = − δ√
qr

(
1 + e−

√
qr
)

+
2δ
qr 2

(
1− e−

√
qr
)
, q = ζΛ, (34)

where δ is dimensionless parameter.

~ Since integration constants C1,C2,C3 are proportional to δ, and C4 = 0,

we reduced the number of parameters from 4 to 1. We have two free

parameters (δ and ζ) which should be determined from measurements.

~ The Taylor expansion of α(r) gives

α(r) = −δ
√
ζ Λ

6
r + o(ζ r 2), (35)

and we conclude that α(r)→ 0 when ζ → 0.
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Schwarzschild-de Sitter (SdS) metric 32

~ One such choice is: C1 = −δ/√q, C2 = 2δ/q, C3 = −δ√q; C4 = 0.

~ C4 has to vanish, since we have exclude term with e
√

qr in (33).

~ In this case solution for α(r), is

α(r) = − δ√
qr

(
1 + e−

√
qr
)

+
2δ
qr 2

(
1− e−

√
qr
)
, q = ζΛ, (34)

where δ is dimensionless parameter.

~ Since integration constants C1,C2,C3 are proportional to δ, and C4 = 0,

we reduced the number of parameters from 4 to 1. We have two free

parameters (δ and ζ) which should be determined from measurements.

~ The Taylor expansion of α(r) gives

α(r) = −δ
√
ζ Λ

6
r + o(ζ r 2), (35)

and we conclude that α(r)→ 0 when ζ → 0.
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~ According to (34), we get

A(r) = 1− µ

r
− Λr 2

3
+

δ√
qr

(
1 + e−

√
q r
)
− 2δ

qr 2

(
1− e−

√
q r
)
, q = ζΛ, (36)

where µ = 2GM/c2. It is clear that when ζ → 0, obtained expression

(36) for A(r) tends to A0(r), as necessary.

The Rotation Curves of Spiral Galaxies

~ The rotation curves of spiral galaxies play an important role,
since we need them to determine the amount and distribution
of dark matter comparing to visible matter.

~ We want examine whether the
√

dS gravitational model gives the
possibility of describing the rotation curves of spiral galaxies.
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~ We start with A(r) given by (36) and present the corresponding

gravitational potential Φ(r), which is

Φ(r) =
c2

2
(
1− A(r)

)
=

GM
r

+
Λc2r 2

6
+

c2

2
α(r). (37)

~ The corresponding gravitational acceleration for potential (37) is

ag(r) = −∂Φ

∂r

=
GM
r 2 −

Λc2r
3

+
δc2

√
qr 2

( 2√
qr
− 1

2

)
− δc2

r

(1
2

+
3

2
√

qr
+

2
qr 2

)
e−
√

q r .

~ Velocity of the rotation curve v̄(r) is

v̄(r) =
√

ag(r) r (38)

= c

√
GM
c2r
− Λr 2

3
+

δ√
qr

( 2√
qr
− 1

2

)
− δ
(1

2
+

3
2
√

qr
+

2
qr 2

)
e−
√

q r .
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~ We checked the validity of the obtained formula for the circular velocity

(38) on two cases: the Milky Way galaxy and the spiral galaxy M33.

~ The values of parameters δ and ζ in (38) are estimated by best fitting of

measured data using the least-squares method.

~ Milky Way case. The Milky Way rotation curve data have taken from

recent paper Jiao, Y; Hammer, F.; Wang, H.; Wang, J.; Amram, P.;

Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way

rotation curve. A&A 2023, 678, A208.

Measured data for distance r , velocity v and velocity error ∆v are obtai-

ned by Gaia telescope and they are presented in Table 1. A pictorial

comparison of measured and calculated velocities is presented in

Figure 2.

Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



The Rotation Curves of Spiral Galaxies 35

~ We checked the validity of the obtained formula for the circular velocity

(38) on two cases: the Milky Way galaxy and the spiral galaxy M33.

~ The values of parameters δ and ζ in (38) are estimated by best fitting of

measured data using the least-squares method.

~ Milky Way case. The Milky Way rotation curve data have taken from

recent paper Jiao, Y; Hammer, F.; Wang, H.; Wang, J.; Amram, P.;

Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way

rotation curve. A&A 2023, 678, A208.

Measured data for distance r , velocity v and velocity error ∆v are obtai-

ned by Gaia telescope and they are presented in Table 1. A pictorial

comparison of measured and calculated velocities is presented in

Figure 2.
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r [kpc] v [km/s] ∆v [km/s] v̄ [km/s] relative errorδv [%]

9.5 221.75 3.17 217.36 1.98
10.5 223.32 3.02 220.19 1.40
11.5 220.72 3.47 221.93 0.55
12.5 222.92 3.19 222.72 0.09
13.5 224.16 3.48 222.66 0.67
14.5 221.60 4.20 221.85 0.11
15.5 218.79 4.75 220.37 0.72
16.5 216.38 4.96 218.28 0.88
17.5 213.48 6.13 215.63 1.01
18.5 209.17 4.42 212.47 1.58
19.5 206.25 4.63 208.83 1.25
20.5 202.54 4.40 204.77 1.10
21.5 197.56 4.62 200.29 1.38
22.5 197.00 3.81 195.42 0.80
23.5 191.62 12.95 190.17 0.75
24.5 187.12 8.06 184.57 1.36
25.5 181.44 19.58 178.62 1.55
26.5 175.68 24.68 172.32 1.91
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Figure: Rotation curve for the Milky Way galaxy. Red points are measured observa-
tional values from Table 1 and blue curve is computed v̄(r) by formula (38), where
δ = 1.9× 10−5, ζ = 4.4× 1010, Λ = 10−52m−2 and M = 4.28× 106M�.
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The Rotation Curves of Spiral Galaxies: M33 – Table 2 38
~ Spiral galaxy M33 case. We have used data for the galaxy Messier 33,
based on observations obtained at the Dominion Radio Astrophysical
Observatory and presented in Kam, S.Z.; Carignan, C.; Chemin, L.; Foster,
T.; Elson, E.; Jarrett, T.H. HI kinematics and mass distribution of Messier 33,
AJ 2017, 154, 41.

r [kpc] v [km/s] ∆v [km/s] v̄ [km/s] relative errorδv [%]

0.5 42.0 2.4 35.62 15.18
1.0 58.8 1.5 49.61 15.63
1.5 69.4 0.4 59.83 13.79
2.0 79.3 4.0 68.02 14.22
2.4 86.7 1.8 73.59 15.12
2.9 91.4 3.1 79.64 12.86
3.4 94.2 4.8 84.90 9.88
3.9 96.5 5.5 89.51 7.25
4.4 99.8 3.9 93.58 6.23
4.9 102.1 1.7 97.21 4.80
5.4 103.6 0.4 100.44 3.05
5.9 105.9 0.7 103.32 2.44
6.4 105.7 1.7 105.90 0.19

Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



The Rotation Curves of Spiral Galaxies: M33 – Table 2 38
~ Spiral galaxy M33 case. We have used data for the galaxy Messier 33,
based on observations obtained at the Dominion Radio Astrophysical
Observatory and presented in Kam, S.Z.; Carignan, C.; Chemin, L.; Foster,
T.; Elson, E.; Jarrett, T.H. HI kinematics and mass distribution of Messier 33,
AJ 2017, 154, 41.

r [kpc] v [km/s] ∆v [km/s] v̄ [km/s] relative errorδv [%]

0.5 42.0 2.4 35.62 15.18
1.0 58.8 1.5 49.61 15.63
1.5 69.4 0.4 59.83 13.79
2.0 79.3 4.0 68.02 14.22
2.4 86.7 1.8 73.59 15.12
2.9 91.4 3.1 79.64 12.86
3.4 94.2 4.8 84.90 9.88
3.9 96.5 5.5 89.51 7.25
4.4 99.8 3.9 93.58 6.23
4.9 102.1 1.7 97.21 4.80
5.4 103.6 0.4 100.44 3.05
5.9 105.9 0.7 103.32 2.44
6.4 105.7 1.7 105.90 0.19
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r [kpc] v [km/s] ∆v [km/s] v̄ [km/s] relative errorδv [%]

6.8 106.8 2.2 107.76 0.90
7.3 107.3 3.0 109.86 2.39
7.8 108.3 4.0 111.73 3.17
8.3 109.7 4.0 113.34 3.37
8.8 112.0 4.8 114.86 2.5
9.3 116.1 2.2 116.15 0.045
9.8 117.2 2.5 117.27 0.06
10.3 116.5 6.5 118.24 1.49
10.8 115.7 8.1 119.07 2.91
11.2 117.4 8.2 119.63 1.9
11.7 116.8 8.9 120.22 2.93
12.2 115.7 9.6 120.69 4.31
12.7 115.1 7.7 121.05 5.17
13.2 117.1 5.1 121.30 3.58
13.7 118.2 3.2 121.45 2.75
14.2 118.4 1.4 121.50 2.62
14.7 118.2 1.8 121.47 2.76
15.1 117.5 2.4 121.38 3.30
15.6 119.6 0.8 121.19 1.33
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r [kpc] v [km/s] ∆v [km/s] v̄ [km/s] relative errorδv [%]

16.1 118.6 1.5 120.93 1.96
16.6 122.6 0.5 120.59 1.64
17.1 124.1 2.9 120.17 3.16
17.6 125.0 2.2 119.69 4.24
18.1 125.5 2.5 119.15 5.06
18.6 125.2 8.1 118.54 5.32
19.1 122.0 9.8 117.87 3.38
19.5 120.4 8.5 117.29 2.58
20.0 114.0 26.6 116.52 2.21
20.5 110.0 34.6 115.70 5.18
21.0 98.7 27.4 114.82 16.33
21.5 100.1 33.4 113.89 13.77
22.0 104.3 35.2 112.91 8.25
22.5 101.2 27.4 111.88 10.56
23.0 123.5 39.1 110.81 10.27
23.5 115.3 26.7 109.69 4.86
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Figure: Rotation curve for spiral galaxy M33. Red points are measured observational
values and blue line is computed v̄(r) by formula (38), where δ = 5.7× 10−6,
ζ = 3.62× 1010, Λ = 10−52m−2 and M = 1.5× 103M�.
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Concluding Remarks

~ In our previously investigations of this model, we obtained results on the

evolution of the universe, where the effects that are usually attributed to

dark energy and dark matter can be described by the nonlocality of the

gravity model
√

dS.

~ Here, we found the Schwarzschild-de Sitter metric in the form of A(r)

(36), what corresponds to the weak gravity approximation and the li-

nearization of nonlinear differential equation (26): a fourth-order linear

differential equation for the Schwarzschild-de Sitter metric was obtained.

~ A general solution linearized equation (32) was found. A particular

solution of α(r) was found (34) such that it satisfies the necessary

condition that it tends to zero when the nonlocality vanishes.

Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Concluding Remarks 42

Concluding Remarks

~ In our previously investigations of this model, we obtained results on the

evolution of the universe, where the effects that are usually attributed to

dark energy and dark matter can be described by the nonlocality of the

gravity model
√

dS.

~ Here, we found the Schwarzschild-de Sitter metric in the form of A(r)

(36), what corresponds to the weak gravity approximation and the li-

nearization of nonlinear differential equation (26): a fourth-order linear

differential equation for the Schwarzschild-de Sitter metric was obtained.

~ A general solution linearized equation (32) was found. A particular

solution of α(r) was found (34) such that it satisfies the necessary

condition that it tends to zero when the nonlocality vanishes.
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Concluding Remarks 43

~ The obtained results were tested on the rotation curves of the Milky Way

and the spiral galaxy M33: the rotation curves were observed in the

domain: 9.5 –26.5 kpc for the Milky Way galaxy and 0.5 –23.5 kpc for the

M33 galaxy.

~ In the Lambda Cold Dark Matter model, it is assumed that dark matter

plays an important role in the mentioned domains, but there is no dark

matter in our nonlocal model.

~ The good agreement between observational measurements and theo-

retical predictions tells us that the role of dark matter can be played by

the nonlocality in the presence of the cosmological constant Λ in

the
√

dS gravity model.

Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Concluding Remarks 43

~ The obtained results were tested on the rotation curves of the Milky Way

and the spiral galaxy M33: the rotation curves were observed in the

domain: 9.5 –26.5 kpc for the Milky Way galaxy and 0.5 –23.5 kpc for the

M33 galaxy.

~ In the Lambda Cold Dark Matter model, it is assumed that dark matter

plays an important role in the mentioned domains, but there is no dark

matter in our nonlocal model.

~ The good agreement between observational measurements and theo-

retical predictions tells us that the role of dark matter can be played by

the nonlocality in the presence of the cosmological constant Λ in

the
√

dS gravity model.
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Model H(R) = G(R) =
√

R − 2Λ - Scalar Field 44

~ Let us start with the action

S =
1

16πG

∫ √
−g R d4x +

1
8πG

∫ √
−g(−1

2
∇µϕ∇µϕ− V (ϕ))d4x .

(39)
~ By variation of the previous action with respect to metric gµν we obtain

1
16πG

Gµν +
1

8πG

(1
4

gµν∇ρϕ∇ρϕ+
1
2

gµνV (ϕ)− 1
2
∇µϕ∇νϕ

)
= 0.

(40)
~ Variation over ϕ yields �ϕ = V ′(φ). The corresponding EOM are:

Gµν = 8 πG Tµν , �ϕ = V ′(ϕ). (41)

~ Now, we obtain

8πGρ =
1
2
ϕ̇2 + V (ϕ), 8πGp =

1
2
ϕ̇2 − V (ϕ). (42)

Finally, we have

8πG(ρ+ p) = ϕ̇2 4πG(ρ− p) = V (ϕ). (43)
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Model H(R) = G(R) =
√

R − 2Λ - Scalar Field 45

~ In the case of cosmological solution for a(t) = A t
2
3 e

Λ
14 t2

, k = 0

~ Corresponding effective density and pressure for this solution are:

ρ =
2t−2 + 9

98 Λ2t2 − 9
14 Λ

12πG
, p = − Λ

56πG
(3

7
Λt2 − 1

)
. (44)

~ If we substitute the previous expressions into (43) we have

ϕ̇2 =
4
3

t−2 − 2
7

Λ, ,

ϕ = ±
(

t

√
4

3t2 −
2Λ

7
+

2t
√

14
t2 − 3Λ

(√
3Λt2

14 − 1
)

√
9Λt2 − 42

+ C
)
, (45)

V (ϕ) = −2Λ

7
+

3Λ2t2

49
+

2
3t2 .
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3Λ2t2

49
+

2
3t2 .
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Model H(R) = G(R) =
√

R − 2Λ - Scalar Field 46

~ But we can start with another action (instead of (39)), for example

S =
1

16πG

∫
d4x

√
−g

(
R − 2Λ +

√
R − 2Λ F(�)

√
R − 2Λ

)
+

1
8πG

∫ √
−g(−1

2
∇µϕ∇µϕ− V (ϕ))d4x . (46)

~ By variation of the previous action with respect to metric gµν , and then

using �
√

R − 2Λ = q
√

R − 2Λ we obtain

1
16πG

(
(Gµν + Λgµν) (1 + F(q)) +

1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ)

)

+
1

8πG

(1
4

gµν∇ρϕ∇ρϕ+
1
2

gµνV (ϕ)− 1
2
∇µϕ∇νϕ

)
= 0, (47)

... to be continued ...

Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Model H(R) = G(R) =
√

R − 2Λ - Scalar Field 46

~ But we can start with another action (instead of (39)), for example

S =
1

16πG

∫
d4x

√
−g

(
R − 2Λ +

√
R − 2Λ F(�)

√
R − 2Λ

)
+

1
8πG

∫ √
−g(−1

2
∇µϕ∇µϕ− V (ϕ))d4x . (46)

~ By variation of the previous action with respect to metric gµν , and then

using �
√

R − 2Λ = q
√

R − 2Λ we obtain

1
16πG

(
(Gµν + Λgµν) (1 + F(q)) +

1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ)

)

+
1

8πG

(1
4

gµν∇ρϕ∇ρϕ+
1
2

gµνV (ϕ)− 1
2
∇µϕ∇νϕ

)
= 0, (47)

... to be continued ...
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FRW metric – Christoffel symbols 1a

Non-trivial Christoffel symbols of Friedman – Robertson – Walker metric

Γ1
01 =

ȧ
a

Γ2
02 =

ȧ
a

Γ3
03 =

ȧ
a

Γ0
11 =

a ȧ
1− k r 2 Γ1

11 =
k r

1− k r 2 Γ2
12 =

1
r

Γ3
13 =

1
r

Γ0
22 = r 2 a ȧ Γ1

22 = r (k r 2 − 1) Γ3
23 = cot θ

Γ0
33 = r 2 a ȧ sin2 θ Γ1

33 = r (k r 2 − 1) sin2 θ Γ2
33 = − sin θ cos θ
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FRW metric – Curvature and Ricci 1a

Non-trivial components of curvature tensor

R0110 =
a ä

1− k r 2 R1221 = − r 2 a2 (ȧ2 + k)

1− k r 2

R0220 = r 2 a ä R1331 = − r 2 a2 sin2 θ (ȧ2 + k)

1− k r 2

R0330 = r 2 a ä sin2 θ R2332 = −r 4 a2 sin2 θ (ȧ2 + k)

Ricci tensor

Rµν =


− 3ä

a 0 0 0

0 u g11 0 0

0 0 u g22 0

0 0 0 u g33

 , u =
a ä + 2 (ȧ2 + k)

a2
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R0220 = r 2 a ä R1331 = − r 2 a2 sin2 θ (ȧ2 + k)

1− k r 2
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1− k r 2

R0330 = r 2 a ä sin2 θ R2332 = −r 4 a2 sin2 θ (ȧ2 + k)
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Ricci tensor

Rµν =


− 3ä
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FRW metric – Einstein tensor 1a

Scalar curvature

R =
6 (a ä + ȧ2 + k)

a2

Einstein tensor

Gµν =


3 (ȧ2+k)

a2 0 0 0

0 −v g11 0 0

0 0 −v g22 0

0 0 0 −v g33

 , v =
2 a ä + ȧ2 + k

a2

FRW metric EOM EOM-2
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Schwarzshield-de Sitter type metric – General case 2a

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

Γ0
01 =

1
2

A′

A
, Γ1

00 =
1
2

A′

B
, Γ1

11 =
1
2

B′

B
,

Γ1
22 = − r

B
, Γ1

33 = − r sin2 θ

B
, Γ2

12 =
1
r
,

Γ2
33 = − sin θ cos θ, Γ3

13 =
1
r
, Γ3

23 = cot θ.

Non-trivial components of curvature tensor

R0101 =
A
4

(
−
(

A′

A

)2

− A′

A
B′

B
+ 2

A′′

A

)
, R0202 =

r
2

A′

B
,

R0303 =
r
2

A′

B
sin2 θ, R1212 =

r
2

B′

B
,

R1313 =
r
2

B′

B
sin2 θ, R2323 = r 2 B − 1

B
sin2 θ.
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Schwarzshield-de Sitter type metric – General case 2a

The Ricci tensor is diagonal and its components are:

R00 =
A′′

2B
− A′B′

4B2 −
A′2

4AB
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rB
, R11 = −A′′
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+
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4A(r)B(r)
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4A2 +
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r
,

R22 = − rA′

2AB
+
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2B2 −
1
B

+ 1, R33 =
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+
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The scalar curvature is
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+
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r 2 .

The Einstein tensor is diagonal and its components are
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+
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+

rA′

2AB
− rB′

2B2

)
sin2 θ.

SdS metric-GC
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Schwarzshield-de Sitter type metric – General case 2a

The Ricci tensor is diagonal and its components are:

R00 =
A′′

2B
− A′B′

4B2 −
A′2

4AB
+

A′

rB
, R11 = −A′′

2A
+

A′B′

4A(r)B(r)
+

A′2

4A2 +
B′

r
,

R22 = − rA′

2AB
+

rB′

2B2 −
1
B

+ 1, R33 =

(
− rA′

2AB
+

rB′

2B2 −
1
B

+ 1
)

sin2 θ.

The scalar curvature is

R = − A′′

AB
+

A′B′

2AB2 +
A′2

2A2B
− 2A′

rAB
+

2B′

rB2 −
2

r 2B
+

2
r 2 .

The Einstein tensor is diagonal and its components are

G00 =
AB′

rB2 −
A

r 2B
+

A
r 2 , G22 =

r 2A′′

2AB
− r 2A′B′

4AB2 −
r 2A′2

4A2B
+

rA′

2AB
− rB′

2B2 ,

G11 =
A′

rA
− B

r 2 +
1
r 2 , G33 =

(
r 2A′′

2AB
− r 2A′B′

4AB2 −
r 2A′2

4A2B
+

rA′

2AB
− rB′

2B2

)
sin2 θ.

SdS metric-GC
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Schwarzshield-de Sitter type metric – Case: B = 1/A 2a

In particular, for B = 1/A we have

ds2 = −A(r)dt2 +
1

A(r)
dr 2 + r 2dθ2 + r 2 sin2 θdϕ2.

The Christoffel symbols are:

Γ0
01 =

1
2

A′

A
, Γ1

00 =
1
2

AA′, Γ1
11 = −1

2
A′

A
, Γ1

22 = −rA, Γ1
33 = −rA sin2 θ,

Γ2
12 =

1
r
, Γ2

33 = − sin θ cos θ, Γ3
13 =

1
r
, Γ3

23 = cot θ.

Non-trivial components of curvature tensor are:

R0101 =
1
2

A′′, R0202 =
r
2

AA′, R0303 =
r
2

AA′ sin2 θ,

R1212 = − r
2

A′

A
, R1313 = − r

2
A′

A
sin2 θ, R2323 = r 2(1− A) sin2 θ.
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Schwarzshield-de Sitter type metric – Case: B = 1/A 2a

The Ricci tensor is diagonal and its components are:

R00 =
1
2

AA′′ +
1
r

AA′, R11 = −1
2

A′′

A
− 1

r
A′

A
,

R22 = 1− A− rA′, R33 =
(
1− A− rA′

)
sin2 θ.

The scalar curvature is

R = −A′′ − 4
r

A′ − 2
r 2 A +

2
r 2 .

The Einstein tensor is presented as follows:

G00 = −A(r)A′(r)

r
− A(r)2

r 2 +
A(r)

r 2 , G11 =
A′(r)

rA(r)
− 1

r 2A(r)
+

1
r 2 ,

G22 =
1
2

r 2A′′(r) + rA′(r), G33 =

(
1
2

r 2A′′(r) + rA′(r)

)
sin2 θ.
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Zoran Rakić On a Simple Model of Nonlocal de Sitter Gravity



Schwarzshield-de Sitter type metric – Case: B = 1/A 2a

The Ricci tensor is diagonal and its components are:

R00 =
1
2

AA′′ +
1
r

AA′, R11 = −1
2

A′′

A
− 1

r
A′

A
,

R22 = 1− A− rA′, R33 =
(
1− A− rA′

)
sin2 θ.

The scalar curvature is

R = −A′′ − 4
r

A′ − 2
r 2 A +

2
r 2 .

The Einstein tensor is presented as follows:

G00 = −A(r)A′(r)

r
− A(r)2

r 2 +
A(r)

r 2 , G11 =
A′(r)

rA(r)
− 1

r 2A(r)
+

1
r 2 ,

G22 =
1
2

r 2A′′(r) + rA′(r), G33 =

(
1
2

r 2A′′(r) + rA′(r)

)
sin2 θ.

SdS metric-C:B=1/A
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