On a Simple Model of Nonlocal de Sitter Gravity

Zoran Raki¢

Faculty of Mathematics, University of Belgrade, Serbia

(joint work with I. Dimitrijevi¢, B. Dragovich, and J. Stankovic)

SEMINAR OF DEPARTMENT OF ASTRONOMY

Chair of Astronomy and Astrophysics, Beograd, 16. decembar, 2025.

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity 1

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity

® GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (g,...) of signa-
ture (1, 3).

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity

» GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (g,...) of signa-
ture (1, 3).

@® There exist three types of homogeneous and isotropic simple connected

spaces of dimension 3:

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity 1

» GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (g,...) of signa-
ture (1, 3).

@® There exist three types of homogeneous and isotropic simple connected

spaces of dimension 3:

o sphere S® (of constant positive sectional curvature),

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity 1

» GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (g,...) of signa-
ture (1, 3).

@® There exist three types of homogeneous and isotropic simple connected

spaces of dimension 3:

o sphere S® (of constant positive sectional curvature),
o flat space R® (of curvature equal 0),

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity 1

» GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (g,...) of signa-
ture (1, 3).

@® There exist three types of homogeneous and isotropic simple connected

spaces of dimension 3:

o sphere S® (of constant positive sectional curvature),
o flat space R® (of curvature equal 0),
o hyperbolic space H? (of constant negative sectional cutvature).

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



General theory of relativity 1

® GTR (or ETG) assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (g,...) of signa-
ture (1, 3).

@® There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

o sphere S® (of constant positive sectional curvature),
o flat space R® (of curvature equal 0),
o hyperbolic space H? (of constant negative sectional cutvature).
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and isotropic pseudo-Riemannian manifold M with metric (g,...) of signa-
ture (1, 3).

@® There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

o sphere S® (of constant positive sectional curvature),
o flat space R® (of curvature equal 0),
o hyperbolic space H? (of constant negative sectional cutvature).

@ Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds? = —d® + &(t) ( + rPd6® + r?sin® 0d¢2> , ke {-1,0,1}, (1)

1 — kr2

where a(t) is a cosmic scale factor which describes the evolution (in

time) of Universe and parameter k which describes the curvature of the
space.
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General theory of relativity

® GTR is based on Einstein-Hilbert action:

- Fi’ 27 ,
S= | (fgrger + Lm) V-9 d'x

where R is scalar curvature, g = det(g,. ) is determinant of metric ten-
sor, A\ is cosmological constant and £, is Lagrangian of matter.
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General theory of relativity

® GTR is based on Einstein-Hilbert action:

- Fi’ 27 ,
S= | (fgrger + Lm) V-9 d'x

where R is scalar curvature, g = det(g,. ) is determinant of metric ten-
sor, A\ is cosmological constant and £, is Lagrangian of matter.

@ The variation of the action S we obtain equations of motion:
F?W—%F?gw—r/\gw:SwGTW, @=1 (2)

where T, is the energy momentum tensor, g,.., is metric tensor, R, is
Ricci tensor and R is scalar curvature.
@ The energy momentum tensor for ideal fluid (matter in cosmology) is

T = diag(—p goo, 911, g2, g33P), ©)

where p is energy density and p is pressure.
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@ Problem of Bing Bang singularity.
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century imply that they could not be explained by GTR without additional
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Problem of Bing Bang singularity.

@ It means that GRT should be modified. There are two approaches:

@
()

(A1) Dark matter and energy
(A2) Modification of GTR, i.e. modification of its Lagrangian £

R—2A
o= 167 G

‘f‘»Cm7 C:1.
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@ If Einstein theory of gravity can be applied to the whole Universe then
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Dark matter and energy

@ Dark matter is responsible for orbital speeds in galaxies, and dark
energy is responsible for accelerated expansion of the Universe.
If Einstein theory of gravity can be applied to the whole Universe then
about 5% of ordinary matter, 27% of dark matter
and 68% of dark energy.
@ It means that 95% of total matter, or energy, represents dark side of the
Universe, which nature is unknown.

®

Motivation for modification of Einstein theory of gravity
@ The validity of General Relativity on cosmological scale is not confirmed.

@ Dark matter and dark energy are not yet detected in the laboratory
experiments.
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Different approaches to modification of Einstein theory of gravity

@ Einstein General Theory of Relativity
From action
R 2A

_ 4
= 16 e +£m)\/ a*x

using variational methods we get field equations

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Modification of Einstein theory of gravity

Different approaches to modification of Einstein theory of gravity

@ Einstein General Theory of Relativity

From action
. R 2N 4
S= | (Geag +Lm) V-9 d'x
using variational methods we get field equations
R,uu - 15 ng.u = /\g;u/ = 87TGT;U/7 e= 1.

where T, is stress-energy tensor, g,... is the metric tensor, R, is Ricci
tensor and R
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Modification of Einstein theory of gravity

B First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

S= / R 2A +Lm)«/—gd4x J
modification
1
R — f(R,A,Ruv, Ris,,0,...), O=V,V'=—=0,,/-99"" 0,
( " B ) 1% \/TQ Hﬁg J

Gauss-Bonnet invariant

G =R —4R"R. + R Rapun J
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Modification of Einstein theory of gravity

W f(R) modified gravity

S= / f(R L+ Ln)y/=g d'x J

B Gauss-Bonnet modified gravity

S_ / R+ag+£m) /—g d'*x J

B nonlocal modified gravity

_ [ (F(R,Ruw,Rs,,0,..) .
S_/( 167G +Lm)/=g d'x J
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B Under nonlocal modification of gravity we understand replacement of the
scalar curvature R in the Einstein-Hilbert action by a suitable function
F(R,0O), where O = V,V* is d’Alembert operator and V, denotes the
covariant derivative
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F(R,0O), where O = V,V* is d’Alembert operator and V, denotes the
covariant derivative

B Let M be a four-dimensional pseudo-Riemannian manifold with metric
(9uv) of signature (1,3). We consider a class of nonlocal gravity models
without matter, given by the following action

S= / (B2 + A FO)G(R) V=g d'x,

where F(OJ Z f,0" is an analytic function of OJ, and A is cosmolo-
n=0
gical constant.
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B Under nonlocal modification of gravity we understand replacement of the
scalar curvature R in the Einstein-Hilbert action by a suitable function
F(R,0O), where O = V,V* is d’Alembert operator and V, denotes the
covariant derivative

B Let M be a four-dimensional pseudo-Riemannian manifold with metric
(9uv) of signature (1,3). We consider a class of nonlocal gravity models
without matter, given by the following action

S= / (B2 + A FO)G(R) V=g d'x,

where F(OJ Z f,0" is an analytic function of OJ, and A is cosmolo-
n=0
gical constant.

B In the case of FRW metric the scalar curvature and d’Alambert operator
are given by

6(aa+ & + k)
a2
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B For calculating variation of the action, 6S = ﬁé&) + 651, we need

the following
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Equations of motion 9

B For calculating variation of the action, 6S = ﬁé&) + 651, we need

the following

A
Lemma 1. For any two scalar functions G and H hold

/ Ho(y/—g) d*x = —% / 9uHIg™ \/—g d*x,

M M

/ HSR\/—g d*x = / Rt — Ko H) 6" /=9 d'x,
M

[«
| HoFOOV=a'x = [ (Ru— Ku) (G FOH) 59 /=g o'
M M
+ i % i/ S (O'H,0"'G)5g" /=g d*x.
=1 < =0 /M

where

K;w =VuVy — 9wl
Su(A,B) = g, V*AV 4B — 2V, AV, B + g,., AUB,
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Equations of motion

B The action S, is Einstein-Hilbert action without matter its variation is
5So = / Guv/—90g"" d*x + A / 9w /—90g"" d*x, ()
M M

where G, = R, — $Rg,. is Einstein tensor.
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Equations of motion

B The action S, is Einstein-Hilbert action without matter its variation is
5% = [ Guy/=80" d'x+ A [ g.r/~G0g" d'x 5)
M M
where G, = R, — $Rg,. is Einstein tensor.

B Using previous theorem we find the variation of S;,
0S5 = 2/gW?'{ R)F(O)G(R)6g" /—g d*x

+ / (RW W— K., W+ %QW) 89" \/—g d*x. (6)
M
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Equations of motion

B The action S, is Einstein-Hilbert action without matter its variation is
5% = [ Guy/=80" d'x+ A [ g.r/~G0g" d'x 5)
M M
where G, = R, — $Rg,. is Einstein tensor.

B Using previous theorem we find the variation of S;,
0S5 = 2/gW?'{ R)F(O)G(R)6g" /—g d*x

+ / (RW W— K., W+ %QW) 89" \/—g d*x. (6)
M

B Since, S = 6 16:.G So + Sy, finally we get equations of motion (EOM).
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Equations of motion

A
Theorem 2 (EOM) The equations of motion for system given by S

G,u,u = 07 (7)
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Equations of motion

Theorem 2 (EOM) The equations of motion for system given by S

é,u,u = 07 (7)
where

s _ G[Ll/ + /\Q;w 1 _ 1
Guv = 167G ZQWH(R)]:(D)Q(R) + R W — KW+ 2Qul~

o) n—1
Qe =315 Sun (AT G(R))

n=1 =0
Ko =V, V. — g0,
Suv(A,B) = .. V*AV,B — 2V ,AV, B + g,., AOB,
W =H'(R)F(O)G(R) + G (R)F(O)H(R).
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where
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® Let us note that V*G,, = 0.
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Equations of motion

Theorem 2 (EOM) The equations of motion for system given by S

G,u,u = 07 (7)
where
~ _ G[Ll/ aF /\Q;w _ 1 _ 1
Gy = 225 — S HRIFD)G(R) + R W = K W+ 5,

o) n—1
Qe =315 Sun (AT G(R))

n=1 =0
Ko =V, V. — g0,
Suv(A,B) = .. V*AV,B — 2V ,AV, B + g,., AOB,
W =H'(R)F(O)G(R) + G (R)F(O)H(R).

® Let us note that V*G,, = 0.

@ EOM are invariant on the replacement of functions G and H in S.
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® If we take
® H(R) = G(R) and
® G(R) be an eigenfunction of the corresponding d’Alembert-Beltrami O
operator: G(R) = qG(R), and consequently F(O)G(R) = F(q)G(R) ,
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Equations of motion (EOM)

® If we take
® H(R) = G(R) and
® G(R) be an eigenfunction of the corresponding d’Alembert-Beltrami O
operator: G(R) = qG(R), and consequently F(O)G(R) = F(q)G(R) ,

Guv + NG — %5 F(Q)G° +2F(@) (R ~ Ku) GG (8)

F(9)S,.(G,G) = 0.

N =

—+
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Equations of motion (EOM)

® If we take
® H(R) = G(R) and
® G(R) be an eigenfunction of the corresponding d’Alembert-Beltrami O
operator: G(R) = qG(R), and consequently F(O)G(R) = F(q)G(R) ,

Guv + NG — %5 F(Q)G° +2F(@) (R ~ Ku) GG (8)

+37(0)8.(6,6) = 0.

@ If we suppose that the manifold M is endowed with FRW metric, then we
have just linearly independent equations: trace and 00-equation.
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@ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

s= [ (org + MAFO)ER) v=a d'x, J

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Models of Nonlocal gravity

@ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

s= [ (org + MAFO)ER) v=a d'x, J

for the following cases:

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Models of Nonlocal gravity

@ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

s= [ (org + MAFO)ER) v=a d'x, J

for the following cases:
1. #(R) =R, G(R) = R

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Models of Nonlocal gravity

@ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

s= [ (org + MAFO)ER) v=a d'x, J

for the following cases:
1. #(R) =R, G(R) = R

2. H(R)=R ', G(R) =

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Models of Nonlocal gravity

@ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

s= [ (org + MAFO)ER) v=a d'x, J

for the following cases:
1. #(R) =R, G(R) = R

2. H(R)=R ', G(R) =

3. #(R) = AP, G(R) = RY
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Models of Nonlocal gravity

@ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

s= [ (org + MAFO)ER) v=a d'x, J

for the following cases:

1. H(R)=R,6(R) =R
2. H(R) =R ', G(R) =
3. H(R)=RP,G(R) = RY

4. H(R) = (R+ Ro)", G(R) = (R+ Ro)",
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Models of Nonlocal gravity

@ Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

s= [ (org + MAFO)ER) v=a d'x, J

for the following cases:
1. #(R) =R, G(R) = R

2. H(R)=R ', G(R) =
3. H(R) = RP,G(R) = R?
4. H(R) = (R+ Ro)", G(R) = (R+ Ro)",

5. R = const.
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1. model #(R) = R, G(R) = R.
@ Using ansatz O R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = ap(ce™ + re~ ).
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@ Solutions exist for all three values of parameter k = 0, £1, under certain
conditions on function F(O), and parameters o, 7, \, A, k.
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@ Using ansatz O R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = ap(ce™ + re~ ).

@ Solutions exist for all three values of parameter k = 0, £1, under certain
conditions on function F(O), and parameters o, 7, \, A, k.
@ Obtained results generalize known cases in literature: in the first case

a(t) = ap cosh (1/5t), in the second and third case for k = 0 we obtain

de Sitter solution.

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Earlier models

1. model #(R) = R, G(R) = R.
@ Using ansatz O R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = ap(ce™ + re~ ).
@ Solutions exist for all three values of parameter k = 0, £1, under certain
conditions on function F(O), and parameters o, 7, \, A, k.
@ Obtained results generalize known cases in literature: in the first case

a(t) = ap cosh (1/5t), in the second and third case for k = 0 we obtain
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@ All obtained solutions satisfy &(t) = Aa(t) > 0, i.e. are consistent with
observational data.
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Earlier models

1. model #(R) = R, G(R) = R.
@ Using ansatz O R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = ap(ce™ + re~ ).
@ Solutions exist for all three values of parameter k = 0, £1, under certain
conditions on function F(O), and parameters o, 7, \, A, k.
@ Obtained results generalize known cases in literature: in the first case
a(t) = ap cosh (1/5t), in the second and third case for k = 0 we obtain

de Sitter solution.
@ All obtained solutions satisfy &(t) = Aa(t) > 0, i.e. are consistent with
observational data.

2. model #(R) = R~', G(R) = R.
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1. model #(R) = R, G(R) = R.
@ Using ansatz O R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = ap(ce™ + re~ ).

@ Solutions exist for all three values of parameter k = 0, £1, under certain
conditions on function F(O), and parameters o, 7, \, A, k.

@ Obtained results generalize known cases in literature: in the first case
a(t) = ap cosh (1/5t), in the second and third case for k = 0 we obtain

de Sitter solution.
@ All obtained solutions satisfy &(t) = Aa(t) > 0, i.e. are consistent with
observational data.

2. model #(R) = R~', G(R) = R.
@ Non-locality, R~ F(O)R, is invariant to transformation R — cR, ¢ € R*.
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@ Using ansatz O R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = ap(ce™ + re~ ).

@ Solutions exist for all three values of parameter k = 0, £1, under certain
conditions on function F(O), and parameters o, 7, \, A, k.

@ Obtained results generalize known cases in literature: in the first case
a(t) = ap cosh (1/5t), in the second and third case for k = 0 we obtain
de Sitter solution.
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observational data.

2. model #(R) = R~', G(R) = R.
@ Non-locality, R~ F(O)R, is invariant to transformation R — cR, ¢ € R*.

@ there are cosmological solutions of form a(t) = ao|t — 1|, in the case
k=0,
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2. model #(R) = R~', G(R) = R.
@ Non-locality, R~ F(O)R, is invariant to transformation R — cR, ¢ € R*.

@ there are cosmological solutions of form a(t) = ao|t — 1|, in the case
k=0,fora#0,1/2 and3«a € 1 + 2N, in cases k # 0, for a = 1.
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Earlier models

1. model #(R) = R, G(R) = R.
@ Using ansatz O R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = ap(ce™ + re~ ).

@ Solutions exist for all three values of parameter k = 0, £1, under certain
conditions on function F(O), and parameters o, 7, \, A, k.
@ Obtained results generalize known cases in literature: in the first case

a(t) = ap cosh (1/5t), in the second and third case for k = 0 we obtain
de Sitter solution.
@ All obtained solutions satisfy &(t) = Aa(t) > 0, i.e. are consistent with
observational data.
2. model #(R) = R~', G(R) = R.
@ Non-locality, R~ F(O)R, is invariant to transformation R — cR, ¢ € R*.

@ there are cosmological solutions of form a(t) = ao|t — 1|, in the case
k=0,fora#0,1/2 and3«a € 1 + 2N, in cases k # 0, for a = 1.

@ Case a(t) = |t — fo| for kK = —1 corresponds to Milne’s model.
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@ We considered case with scale factor in the form a(t) = ao exp(— % t%)

@ For p = g = 1 there are infinite number of solutions, and constants v and
A satisfy v = —12A.
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A satisfy v = —12A.

@ In other cases we proved existence of unique solution, for arbitrary
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@ In other cases we proved existence of unique solution, for arbitrary
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3. model #(R) = R?,G(R) = R%,p > q.
@ We considered case with scale factor in the form a(t) = ao exp(— % t%)

@ For p = g = 1 there are infinite number of solutions, and constants v and
A satisfy v = —12A.

@ In other cases we proved existence of unique solution, for arbitrary
~v € R. We explicitly found solutions for 1 < g < p < 4.
4. model 1(R) = (R+ Ro)™, G(R) = (R+ Ro)™.

@ We considered scale factor and ansatz of the form

a(t) = At" exp(—%tz) and  O(R+ Ro)™ = r(R+ Ro)™.
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@ Using this ansatz we obtined the followinf five solutions:
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Earlier models

3. model #(R) = R?,G(R) = R%,p > q.
@ We considered case with scale factor in the form a(t) = ao exp(— % t%)

@ For p = g = 1 there are infinite number of solutions, and constants v and
A satisfy v = —12A.

@ In other cases we proved existence of unique solution, for arbitrary
~v € R. We explicitly found solutions for 1 < g < p < 4.

4. model H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ We considered scale factor and ansatz of the form

a(t) = At" exp(—%tz) and  O(R+ Ro)™ = r(R+ Ro)™.

@ Using this ansatz we obtined the followinf five solutions:

© r=my,n=0 Ro=~, m=1}
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3. model #(R) = R?,G(R) = R%,p > q.
@ We considered case with scale factor in the form a(t) = ao exp(— % t%)

@ For p = g = 1 there are infinite number of solutions, and constants v and
A satisfy v = —12A.

@ In other cases we proved existence of unique solution, for arbitrary
~v € R. We explicitly found solutions for 1 < g < p < 4.

4. model H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ We considered scale factor and ansatz of the form

a(t) = At" exp(—%tz) and  O(R+ Ro)™ = r(R+ Ro)™.

@ Using this ansatz we obtined the followinf five solutions:
© r=my,n=0 Ro=~, m=1}
© r=my,n=0 Ro=73, m=1
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Earlier models

3. model #(R) = R?,G(R) = R%,p > q.
@ We considered case with scale factor in the form a(t) = ao exp(— % t%)

@ For p = g = 1 there are infinite number of solutions, and constants v and
A satisfy v = —12A.

@ In other cases we proved existence of unique solution, for arbitrary
~v € R. We explicitly found solutions for 1 < g < p < 4.

4. model H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ We considered scale factor and ansatz of the form

a(t) = At" exp(—%tz) and  O(R+ Ro)™ = r(R+ Ro)™.

@ Using this ansatz we obtined the followinf five solutions:
© r=my,n=0 Ro=~, m=1}
© r=my,n=0 Ro=73, m=1

o r=my,n=% R=%y m=1
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Earlier models

3. model #(R) = R?,G(R) = R%,p > q.
@ We considered case with scale factor in the form a(t) = ao exp(— % t%)

@ For p = g = 1 there are infinite number of solutions, and constants v and
A satisfy v = —12A.

@ In other cases we proved existence of unique solution, for arbitrary
~v € R. We explicitly found solutions for 1 < g < p < 4.

4. model H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ We considered scale factor and ansatz of the form

a(t) = At" exp(—%tz) and  O(R+ Ro)™ = r(R+ Ro)™.
@ Using this ansatz we obtined the followinf five solutions:

© r=my,n=0 Ro=~, m=1}

o r=my n=0 Ro=% m=1

o r=my,n=% R=%y m=1

1 1
° r:my,n:E,Rozsy,m:_Z
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Earlier models

3. model #(R) = R?,G(R) = R%,p > q.
@ We considered case with scale factor in the form a(t) = ao exp(— % t%)

@ For p = g = 1 there are infinite number of solutions, and constants v and
A satisfy v = —12A.

@ In other cases we proved existence of unique solution, for arbitrary
~v € R. We explicitly found solutions for 1 < g < p < 4.

4. model 1(R) = (R+ Ro)™, G(R) = (R + Ro)™.

@ We considered scale factor and ansatz of the form

a(t) = At" exp(—ﬁtz) and  O(R+ Ro)" =r(R+ Ro)™
@ Using this ansatz we obtined the followinf five solutions:
© r=my,n=0 Ro=~, m=1}
© r=my,n=0 Ro=73, m=1

o r=my,n=% R=%y m=1

© r=my,n=%, Ry=8y, m=-}
_ 2mst 1
° r=mqy, n= ,‘?0_37,m_E
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Earlier models

4. model #(R) = (R+ Ro)", G(R) = (R+ Ro)".
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4. model #(R) = (R+ Ro)", G(R) = (R+ Ro)".

@ Inthe case n = 0, m = } we found unique solution for arbitrary 7 (%)
and F'(%).
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4. model #H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ Inthe case n = 0, m = } we found unique solution for arbitrary 7 (%)
and F'(%).
@ Inthe case n = %, m = } we found unique solution for 7(%) and
F'(%) which satisfy A = —Z+.

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Earlier models

4. model #H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ Inthe case n = 0, m = } we found unique solution for arbitrary 7 (%)
and F'(%).
@ Inthe case n = %, m = } we found unique solution for 7(%) and
F'(%) which satisfy A = —Z+.

@ Inthe case n =}, m = —1 there is no solutions of EOM.
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@ Inthe case n = 0, m = } we found unique solution for arbitrary 7 (%)
and F'(%).
@ Inthe case n = %, m = } we found unique solution for 7(%) and
F'(%) which satisfy A = —Z+.

@ Inthe case n =}, m = —1 there is no solutions of EOM.

5. model R = const.

@ If R = Ry > 0, then there exist non-singlar solutions for all three
values of parameter k = 0, +1, which are bounced in the cases k = 0, 1.
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4. model #H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ Inthe case n = 0, m = } we found unique solution for arbitrary 7 (%)
and F'(%).
@ Inthe case n = %, m = } we found unique solution for 7(%) and
F'(%) which satisfy A = —Z+.

@ Inthe case n =}, m = —1 there is no solutions of EOM.

5. model R = const.

@ If R = Ry > 0, then there exist non-singlar solutions for all three
values of parameter k = 0, +1, which are bounced in the cases k = 0, 1.

@ If R = Ry = 0 then exists Milne’s solution a(t) = |f + Z|.
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Earlier models

4. model #(R) = (R+ Ro)", G(R) = (R+ Ro)".

@ Inthe case n = 0, m = } we found unique solution for arbitrary 7 (%)
and F'(%).

@ Inthe case n = % m= % we found unique solution for 7(3) and
F'(3) which satisfy A = —Z.

@ Inthe case n =}, m = —1 there is no solutions of EOM.

5. model R = const.

@ If R = Ry > 0, then there exist non-singlar solutions for all three
values of parameter k = 0, +1, which are bounced in the cases k = 0, 1.

@ If R = Ry = 0 then exists Milne’s solution a(t) = |f + Z|.
@ If R = Ry < 0, then there exists non-trivial singular cyclic

solution a(t) = /72| cos 3(1/— Rt — )| za k = —
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Earlier models

4. model #H(R) = (R+ Ro)", G(R) = (R+ Ro)™.
@ Inthe case n = 0, m = } we found unique solution for arbitrary 7 (%)
and F'(%).
@ Inthe case n = %, m = } we found unique solution for 7(%) and
F'(%) which satisfy A = —Z+.

@ Inthe case n =}, m = —1 there is no solutions of EOM.

5. model R = const.

@ If R = Ry > 0, then there exist non-singlar solutions for all three
values of parameter k = 0, +1, which are bounced in the cases k = 0, 1.

@ If R = Ry = 0 then exists Milne’s solution a(t) = |f + Z|.
@ If R = Ry < 0, then there exists non-trivial singular cyclic
solution a(t) = /72| cos 3(1/— Rt — )| za k = —

@ Case Ry = 0 is considered as an limit case when Ry — 0, and
in both cases Ay < 0 and Ry > 0, we obtain Minkowski space.
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Special cosmological models

@® Recently, we have considered classes of nonlocal gravity models with
cosmological constant A and without matter, given by

(M4)  S=

1616/(R—2/\+(R—4A)]—'(D)(R—4A))\/jgd4x,
w M

(MS) SZL/(R—z/w VR_2AF(O)VR - 20),/—g d'x,
167G [y

where P(R) and Q(R) are some differentiable functions of R, while

FO) =20+ < f,0"0= V.V = = 0. (v/—99"" )
isd’ AIembert-BeItraml operator and A is cosmologlcal constant.
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VR —2N=+v=2A\/1— f where |R| < |2L].

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Special cosmological models

@® Recently, we have considered classes of nonlocal gravity models with
cosmological constant A and without matter, given by

(M4)  S=

1616/(R—2/\+(R—4A)]—'(D)(R—4A))\/jgd4x,
w M

(MS) SZL/(R—z/w VR_2AF(O)VR - 20),/—g d'x,
167G [y

where P(R) and Q(R) are some differentiable functions of R, while
F(O) =225 h0"+ 3,5 07", 0= V.V = -0, (vV=99" 8,)
isd’ AIembert-BeItraml operator and A is cosmologlcal constant.

® The action (M4) is limit case od the action (MS) since: the expansion of
VR —2N=+v=2A\/1— f where |R| < |2L].

@ Linear approximation in R/2 A gives VR —2A = -2\ (1 — %),
then the nonlocal term in (MS) becomes

VR FO)VR-2 ~77 (R—4A)F(O) (R - 4N),
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Model #H(R) = G(R) = VR — 2\

@ Let us consider model (MS) in more details, so we

S:% /M(R—2/\+ VR —2AF(O)VR - 2N)/—g d*x, (9)

where F(O) =1+ >, 5 HhO"+ >, 5 f,07"
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Model #H(R) = G(R) = VR — 2\

@ Let us consider model (MS) in more details, so we

S:L/ (R—2A+ R —-2AF(O)VR —2N)/—g d*x, 9)
where F(O) =1+ >, 5 HhO"+ >, 5 f,07"
® ltisa since the EOM (8), for G(R) = vVR — 2, is simpli-
fied to

(G + Agu) (1 + F(q)) + %]—"(q)SW(\/R “ oA /R—20) =0, (10)

where we take g = ¢A.
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@ Let us consider model (MS) in more details, so we

S:L/ (R—2A+ R —-2AF(O)VR —2N)/—g d*x, 9)
where F(O) =1+ >, 5 HhO"+ >, 5 f,07"
® ltisa since the EOM (8), for G(R) = vVR — 2, is simpli-
fied to

(G + Agu) (1 + F(q)) + %]—"(q)SW(\/R “ oA /R—20) =0, (10)

where we take g = ¢A.
® ltis evident that EOM (10) are satisfied if 7(q) = —1 and F'(q) = 0.
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Model #H(R) = G(R) = VR — 2\

@ Let us consider model (MS) in more details, so we

:L/ (R—2A+ R —-2AF(O)VR —2N)/—g d*x, 9)
where F(O) =1+ > L, 0"+ > f, 0"

® ltisa since the EOM (8 ), for G(R) = VR — 2, is simpli-
fied to

(G + Agu) (1 + F(q)) + %J—"(q)SW(\/R “ oA /R—20) =0, (10)

where we take g = ¢CA.
® ltis evident that EOM (10) are satisfied if 7(q) = —1 and F'(q) = 0.
One such nonlocal operator () is

HD):1+§?"[(S)H+ (%Y} _1—L<
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1. Cosmological solution in the flat Universe (k =0)

1.1. Solutions of the form a(t) = At" &7
@ There are two solutions:

a(t) = At3 efa® ]—'(f;/\) =1, ]-"(fgl\) =0,

a(t) = Aeb?, F(=A) = -1, F'(=A) =0.
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1. Cosmological solution in the flat Universe (k =0)

1.1. Solutions of the form a(t) = At" &7
@ There are two solutions:

a(t)=At5 efal ]—'(f;/\) =1, ]-"(fgl\) =0,
a(f) = Aest, F(=A) = -1, F'(=A) =0.

1.2. New solutions of the form a(t) = (o e + g e~ )Y
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1. Cosmological solution in the flat Universe (k =0)
1.1. Solutions of the form a(t) = At" &7
@® There are two solutions:
&
a(t)=At5 efal ]—'(f;/\) =1, F(=5N) =0,
a(t) = Aes”, F(=A) = 1, F'(=A) =0.

1.2. New solutions of the form a(t) = (o e + g e~ )Y
@® In this case for a8 # 0, R # 2A and g # 0 we have solutions if

7:57 8
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1. Cosmological solution in the flat Universe (k =0)
1.1. Solutions of the form a(t) = At" &7
@® There are two solutions:
&
a(t)=At5 efal ]—'(f;/\) =1, F(=5N) =0,
a(t) = Aes”, F(=A) = 1, F'(=A) =0.

1.2. New solutions of the form a(t) = (o e + g e~ )Y
@® In this case for a8 # 0, R # 2A and g # 0 we have solutions if

2 3 3
_2 — 32N A=44/2A.
773 9= 3 8

® When af # 0, we have the following two special solutions:
3

as(t) = A cosh’ (\/?t), F(gh) =-1, F/(50) =0,

3

ay(t) = A sinh3 (\/51‘), f(g/\) = —1, _F’(gl\) =0.
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1. Cosmological solution in the flat Universe (k = 0)
1.3. New solutions of the form a(t) = (o sin A\t + 8 cos A\t)?
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Model H(R) = G(R) = VR — 2A

1. Cosmological solution in the flat Universe (k = 0)
1.3. New solutions of the form a(t) = (o sin A\t + 8 cos A\t)?

® For a # 0 and 3 # 0 there are only possibility for v, v = % Taking 8 = +a,
and A = a%, we have the following two solutions:

as(t) = A(1+sin (2,/-%/\ 0)°, ]-'(g/\) =1, ]-"(gA) =0,
as(t) = A(1—sin (2,/-%/\ 0)°, J—‘(g/\) =1, J—"(g/\) =0.
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Model H(R) = G(R) = VR — 2A

1. Cosmological solution in the flat Universe (k = 0)
1.3. New solutions of the form a(t) = (o sin A\t + 8 cos A\t)?

® For a # 0 and 3 # 0 there are only possibility for v, v = % Taking 8 = +a,
and A = a%, we have the following two solutions:

_ , 3\ )3 3. _ 2D
as(t) = A(1+sin (2,/—§/\t)) : F(gh =1, F/(5N =0,
. 3 Y 3 3
as(t) = A (1 —sin (21/—5A 0)°, F(gh) =1, F (5N =0.
® For a = 0or 8 = 0, we have also two cosmological solutions with v = %:

ar(t) = A sin’ (‘/—g/\ f), ]—‘(gA) =1, ]—"(gA) —o,

ag(t) = A cos5 ( —g/\ 1), J-‘(g/\) = —1, f’(g/\) =0.
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2.1. Solutions of the form a(t) = A etVit, (k = £1)
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2. Cosmological solution in the open and closed Universe (k = F1)

2.1. Solutions of the form a(t) = A etVit, (k = £1)
® Fora# 0,8 =0o0ra =0, # 0 we have the following solution:

A 1 1
ag(z)eriﬁ‘, k=+1, F(zN)=-1, F(3N) =0, A>0.
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2.1. Solutions of the form a(t) = A etVit, (k = £1)
® Fora# 0,8 =0o0ra =0, # 0 we have the following solution:

A 1 1
ag(z)eriﬁ‘, k=+1, F(zN)=-1, F(3N) =0, A>0.

2.2. New solutions of the form a(t) = (a eM + g e~ )7, (k = £1)
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2. Cosmological solution in the open and closed Universe (k = F1)
2.1. Solutions of the form a(t) = A etVit, (k = £1)

® Fora# 0,8 =0o0ra =0, # 0 we have the following solution:

A 1 1
ag(z)eriﬁ‘, k=+1, F(zN)=-1, F(3N) =0, A>0.

2.2. New solutions of the form a(t) = (a eM + g e~ )7, (k = £1)

v Fora#0, 8 #0, R # 2\, g # 0 there are two following cosmological
solutions:

aro(t) = A cosh? (ﬂ/g/\ £), k=41, ]—'(%A) =1, F (5N =0,

1 1

ar1(t) = A sinhz (‘/2’\ ), k==£1, F(GA) =1, F (3N =0.
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@® 1. Cosmological solution for a;(t) = A t5 efel , k=0

@ The corresponding

, acceleration and the scalar
curvature are:
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@® 1. Cosmological solution for a;(t) = A t5 efel , k=0

@ The corresponding

, acceleration and the scalar
curvature are:

_a 21 1
Hi(t) 2 31 + 7/\1‘,
21 1 1 e
= —A
a() = (- gp +gh+ z5"°F) @),
_41 22, 12,50
Ri(t) 3R 7/\+49At,
® Friedman equations gives
_ 2072+ AN - EN N
p(t) = 19-G 5 P(”**R(?/\f - 1), (11)

where p and p are analogs of the energy density and pressure of the

dark side of the universe, respectively. The corresponding equation of
state is p(t) = w(t) p(t).
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Model H(R) = G(R) = VR — 2A

® (11) implies that w(t) — —1 when t — oo, what cor-
responds to an analog of A dark energy dominance in the standard
cosmological model.
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Model H(R) = G(R) = VR — 2A

® (11) implies that w(t) — —1 when t — oo, what cor-
responds to an analog of A dark energy dominance in the standard
cosmological model.

® It means that this nonlocal gravity model with cosmological solution
a(t)=A t5 e describes some effects usually attributed to the dark
matter and dark energy.
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Model H(R) = G(R) = VR — 2A

® (11) implies that w(t) — —1 when t — oo, what cor-
responds to an analog of A dark energy dominance in the standard
cosmological model.

® It means that this nonlocal gravity model with cosmological solution
a(t)=A t5 e describes some effects usually attributed to the dark
matter and dark energy.

@ This solution is invariant under transformation t — —t and singular at
cosmic time t = 0.
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Model H(R) = G(R) = VR — 2A

® (11) implies that w(t) — —1 when t — oo, what cor-
responds to an analog of A dark energy dominance in the standard
cosmological model.

® It means that this nonlocal gravity model with cosmological solution

a(t)=A t5 e describes some effects usually attributed to the dark
matter and dark energy.

@ This solution is invariant under transformation t — —t and singular at
cosmic time t = 0.

® Let us recall, the second Friedman equation

NG (12)

277_ _
H_a2 3P 23

where is energy density in the standard model of cosmology.
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Predictions of the model and observational data

@ Then we can rewrite the previous equation as,

g _ & _8rG  81G k A
B2 T T
_ SCrﬂ'G+8Cm7TG_£ A
- & 23
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Predictions of the model and observational data

N

® Then we can rewrite the previous equation as,

e _ 8nG 8rG

2 K A
o= g3 rt3mazts
_ SCrﬂ'G+8Cm7TG_ k A
B at a° a2 3

H Q Qn
M0
Hg 7 I P 4 2 + £
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Predictions of the model and observational data

@ Then we can rewrite the previous equation as,

g _ & _8rG  81G k A
B2 T T
_ SCrﬂ'G+8Cm7TG_£ A
- & 23

H Q Qn
M0
Hg 7 I P 4 2 + £

® Observational data obtained by Planck-2018 for the ACDM model:
to = (13.801 + 0.024) x 10°yr — age of the universe,
H(t) = (67.40 £ 0.50) km/s/Mpc — Hubble parameter,
Qm = 0.315 £ 0.007— matter density parameter,

Qa = 0.685 — A density parameter,
wo = —1.08 + 0.03- ratio of pressure to energy density.
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Predictions of the model and observational data

® From, a 21 1
Hi(t) = =2- 4 A
1 (1) 2 31 + 7 t,
taking Hi () = H(%) we calculate Ay = 1.05 x 10~*°s2 that differs

from A = 3H?(fH) Qx = 0.98 x 10~**s~2 (by ACDM model).
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Predictions of the model and observational data

()

) From :
’ _a_21 1
Hi(t) = 2 31 + 7/\t,

taking Hi () = H(%) we calculate Ay = 1.05 x 10~*°s2 that differs
from A = 3H?(fH) Qx = 0.98 x 10~**s~2 (by ACDM model).
» We also computed
a(h)/ai(t) =2.7 x 10~ %®s72
R(t) = 4.5 x 107**s72 and consequently
R(t) —2A = 2.4 x 103572,

®
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Predictions of the model and observational data

11
L,
; 770

® From, 4 )

Hi(t) = & — =

(1) 2~ 3

taking Hi () = H(%) we calculate Ay = 1.05 x 10~*°s2 that differs
from A = 3H?(fH) Qx = 0.98 x 10~**s~2 (by ACDM model).

» We also computed

®

é1(to)/a1(t0) — 27 %107 %g 2
R(t) = 4.5 x 10"*s™2 and consequently
R(to) — 2A = 2.4 x 10~ %572,

@® Replacing solution aj (t) with k = 0, Friedman equations give

Pi(t) = g (R = T0) = gom (5177 = 2M + 2gMF),

A 3.
PD = ggrg (1 = 7ME):
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Predictions of the model and observational data

@ For t = fy, from previous formula, and from ACDM model we have

5 (1) — 3 9
pi(t) =2.26 x 107 05,

3 A

2 -3 9
p(l‘o):R(Ho—§>:2.68><1O .
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Predictions of the model and observational data

®

» For t = ty, from previous formula, and from ACDM model we have

5 (1) — 3 9
pi(t) =2.26 x 107 05,

3 A _
plto) = W;(Hg_ 5) =268 x 107% %.

@

®» Then, for vacuum energy density of background solution a;(t) and
ACDM model, we have

_ M =N o a0 g
p(to) — p1(b) = 81G =pn —pn =042 x10 et
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Predictions of the model and observational data

®

» For t = ty, from previous formula, and from ACDM model we have

5 (1) — 3 9
pi(t) =2.26 x 107 05,

3 A _
plto) = W;(Hg_ 5) =268 x 107% %.

@

®» Then, for vacuum energy density of background solution a;(t) and
ACDM model, we have

_ M =N o % g
p(to) = pi(lo) = —g—== = pry — pa = 0.42 107 —=,
P ang . . 3Hg o —30 g
@ Critical energy density: pc = 8:GC " 8.51 x 10 o
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Predictions of the model and observational data

®

For t = 1y, from previous formula, and from ACDM model we have

5 (1) — -3 _9
pi(t) =2.26 x 107 05,

3 A _
o) = SG(HO 3>:2.68><10 30%.

@ Then, for vacuum energy density of background solution a; (t) and
ACDM model, we have

_ M =N o % g
pllo) = p1(to) = —g—m= = pay — pn =042 x 1072 2,
® Criti oo H2 -3 g
@ Critical energy density: pc = 8:GC " =8.51 x 10 o

@ and consequently,

Qp = ppi = 0734, Q= %A —0.685, AQr=Qp —Qp=0.049, (13)
C c

Oy = pi(to) _ — 0.266, Qm = plto) _ 0.315, AQm = Qm — Qm, = 0.049. (14)
Pec pe
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Predictions of the model and observational data

@® According to (13) and (14), we obtain that Q,, = 26, 6% corresponds to
dark matter and AQ, = AQx = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.
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Predictions of the model and observational data

@® According to (13) and (14), we obtain that Q,, = 26, 6% corresponds to
dark matter and AQ, = AQx = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

% Efective presure. At the beginning, p1(0) = z5 > 0, then decreases

and equals zero at t = /5% = 4.71 x 10" s = 14,917 x 10%yr.
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Predictions of the model and observational data

D)
%

According to (13) and (14), we obtain that 2, = 26, 6% corresponds to
dark matter and AQ, = AQx = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

% Efective presure. At the beginning, p1(0) = z5 > 0, then decreases

and equals zero at t = /5% = 4.71 x 10" s = 14,917 x 10%yr.

p
G

()

we have parameter w;(t) = % which has future behavior
in agreement with standard model of cosmology, i.e. w4 (t — c0) — —1.
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Predictions of the model and observational data

®

()

®

» According to (13) and (14), we obtain that 2, = 26, 6% corresponds to

dark matter and AQ, = AQx = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

Efective presure. At the beginning, pi(0) = 15 > 0, then decreases

and equals zero at t = /5% = 4.71 x 10" s = 14,917 x 10%yr.

we have parameter w;(t) = % which has future behavior
in agreement with standard model of cosmology, i.e. w4 (t — c0) — —1.

Note that has minimum at t,,, = 21.1 x 109yr and itis
Hi(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time ty,c = 7.84 x 10°%yr when,a = 0.
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Schwarzschild-de Sitter (SdS) metric

® We want to investigate our model outside the spherically symmetric
massive body - it is natural to consider a generalization of the Schwarz-
schild-de Sitter (SdS) metric starting from the standard Schwarzschild
expression,

ds® = —A(r)dt® + B(r)dr® + r?d6® + r®sin® 6 d°. (15)
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Schwarzschild-de Sitter (SdS) metric

® We want to investigate our model outside the spherically symmetric
massive body - it is natural to consider a generalization of the Schwarz-
schild-de Sitter (SdS) metric starting from the standard Schwarzschild
expression,

ds? = —A(r)df® + B(r)dr? 4 r*d6® + r®sin® 6 dp°. (15)

)

® The corresponding scalar curvature R of above metric (15)

2 2 2A/(r) A'(r)? 2B'(r)  A(r)B'(r) A (r)
R=12 " 7B0) ~ AmB0 2A2B0) T B T 2AmB(nz ~ AnB(n P
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Schwarzschild-de Sitter (SdS) metric

® We want to investigate our model outside the spherically symmetric
massive body - it is natural to consider a generalization of the Schwarz-
schild-de Sitter (SdS) metric starting from the standard Schwarzschild
expression,

ds? = —A(r)df® + B(r)dr? 4 r*d6® + r®sin® 6 dp°. (15)

®

® The corresponding scalar curvature R of above metric (15)

2 2 2A/(r) A'(r)? 2B'(r)  A(r)B'(r) A (r)
R=12 " 7B0) ~ AmB0 2A2B0) T B T 2AmB(nz ~ AnB(n P

® We need to solve the equation

u) = 5 (0t + (40 - 20

> u’(r)) =qu(r), u(r)=+vR—-2N, (17)

B(r) 2 \A(r) B(r)
where
10,0, »# 29
=Zarl ol "2 T (18)

is the Laplace operator in spherical coordinate r.
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Schwarzschild-de Sitter (SdS) metric

@® Local de Sitter case, with static spherically symmetric body of mass M,
the Schwarzschild-de Sitter metric (15) is

Ar) = Ao(r)_1,ﬁ,’\7’7 B(r) = BO(r):A01(r)’ ”:2232/\4.

(19)
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Schwarzschild-de Sitter (SdS) metric

@® Local de Sitter case, with static spherically symmetric body of mass M,
the Schwarzschild-de Sitter metric (15) is

Ar? 1 2GM
An) = Ao(r) =1 =2 — 2, B(r) = Bo(r) = T =

(19)

@ It makes sense to suppose that solution of equation (17) is of the form
. 1

Ao(r) = B(r)’
where «(r) and 3(r) are some dimensionless functions. When

¢ = q/N — 0, then nonlocal operator nonlocal de Sitter v/ dS gravity
model (9) becomes local.

A(r) = Ao(r) — a(r), B(r) (20)
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Schwarzschild-de Sitter (SdS) metric

@® Local de Sitter case, with static spherically symmetric body of mass M,
the Schwarzschild-de Sitter metric (15) is

Ar? 1 2GM
An) = Ao(r) =1 =2 — 2, B(r) = Bo(r) = T =

(19)

@ It makes sense to suppose that solution of equation (17) is of the form

1
 Ao(r) = B(r)’
where «(r) and 3(r) are some dimensionless functions. When
¢ = q/\ — 0, then nonlocal operator nonlocal de Sitter v/dS gravity
model (9) becomes local.
@ It must be that A(r) — Ao(r) and B(r) — By(r) when ¢ — 0, that is
a(r) —»0and 3(r) - 0as ¢ — 0.

A(r) = Ao(r) — a(r), B(r) (20)
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Schwarzschild-de Sitter (SdS) metric

@® Local de Sitter case, with static spherically symmetric body of mass M,
the Schwarzschild-de Sitter metric (15) is

Ar? 1 2GM
An) = Ao(r) =1 =2 — 2, B(r) = Bo(r) = T =

(19)

It makes sense to suppose that solution of equation (17) is of the form

1
 Ao(r) = B(r)’
where «(r) and 3(r) are some dimensionless functions. When
¢ = q/\ — 0, then nonlocal operator nonlocal de Sitter v/dS gravity
model (9) becomes local.
® It must be that A(r) — Ao(r) and B(r) — Bo(r) when ¢ — 0, that is
a(r) —»0and 3(r) - 0as ¢ — 0.
@ After replacing A= Ay — a(r) and B =

R
)

A(r) = Ao(r) — a(r), B(r) (20)

P

-
Ag—B(r)
in operator [J of equation (17), we obtain

in scalar curvature R and
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Schwarzschild-de Sitter (SdS) metric

2 Ao =B, / 1A(/)_a/ 1
R=—-(1-A 2 Ay — - - =
r2( o +8)+ Ao 704( 0 a)<4Ao*a r>

a'+1> Ay —

r A — «

A — . (A//_ //)7 (21)

~2(A4 6)(

Ou = (Ao — B)Au+ - [20 (A — ’)+A6—ﬁ’]u’:qu, u=+vR—2n (22
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Schwarzschild-de Sitter (SdS) metric

_2 Ay — B ’ ’ 1A(/)_a/ 1
A= 20 At sl - (R - )
1A)—o 1\ A -8
_2(A- — B (=20 N 20 A o 21
A= o= ty) ~ a g~ @1)

Ao
Ao

1 —
Ou = (AO—B)AU+§[ _i(A;) —a’)+A6—ﬁ’]U’ =qu, u=+R—2\ (22
@ If we substitute expressions (21) and (22) in eigenvalue problem for [J
operator, we will get a differential equation in «(r) and §(r). Since, in the
local case holds By(r) = 1/Ao(r), there is a sense to take B(r) = 1/A(r)
in the nonlocal case, it means §(r) = «(r), and it yields:
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Schwarzschild-de Sitter (SdS) metric

_2 Ay — B ’ ’ 1A(/)_a/ 1
A= 20 At sl - (R - )
1A)—o 1\ A -8
_2(A- — B (=20 N 20 A o 21
A= o= ty) ~ a g~ @1)

Ao
Ao

1 —
Ou = (AO—B)AU+§[ _i(A;) —a’)—f—A{)—ﬁ’]u’ =qu, u=+R—2\ (22
@ If we substitute expressions (21) and (22) in eigenvalue problem for [J
operator, we will get a differential equation in «(r) and §(r). Since, in the
local case holds By(r) = 1/Ao(r), there is a sense to take B(r) = 1/A(r)
in the nonlocal case, it means §(r) = «(r), and it yields:

2
R(r) = rlz[z —2A(r) — 4rA'(r) — rPA"(r)] = :7% [rP(1 - A(n)], (23)
Ou(r) = AN W'+ (A + 2 AU = L 2 [PAND] (29
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Schwarzschild-de Sitter (SdS) metric

@® If we put 8(r) = a(r) in (21) and (22), we get

20 4ad/ o
R=4N+ — + +a, (25)
I r

Ou = (Ay — a)Au + (Ay — o' )U' = qu, u=+vR-2A. (26)
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Schwarzschild-de Sitter (SdS) metric

@® If we put 8(r) = a(r) in (21) and (22), we get

2a 40/ 0//7 (25)

Ou = (Ao —a)Au+(A6 — ) = qu, u=+vR-2A. (26)

® We want to find function «(r), and we use substitution of

=vR-2A \/2/\+2—0‘+—+ 27)

into equation (26).
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Schwarzschild-de Sitter (SdS) metric

@® If we put 8(r) = a(r) in (21) and (22), we get

%)

2a 40/ 0//7 (25)

Ou = (Ao —a)Au+(A6 — ) = qu, u=+vR-2A. (26)

)

® We want to find function «(r), and we use substitution of

=vR-2A \/2/\+2—0‘+—+ 27)

into equation (26).

@ One gets an ordinary nonlinear differential equation of the fourth order,

since it is nonlinear, it is a very difficult task to find the corresponding
exact solution. In the sequel of this lecture we will turn our attention to
the corresponding linear differential equation: it means we will limit our-
selves to studying the Schwarzshild-de Sitter metric in weak gravity
field approximation.
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Schwarzschild-de Sitter (SdS) metric

® It is like considering gravity field far from a massive body, so [J can be
replaced by the Laplacian A in equation (26). In such case we will take
A(r) = 1in (26), that is

Ar)=A(r)—a(r)=1-=— — — a(r) =1, (28)

i.e. if the following is satisfied,

2

Ar

H
p
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Schwarzschild-de Sitter (SdS) metric

® It is like considering gravity field far from a massive body, so [J can be
replaced by the Laplacian A in equation (26). In such case we will take
A(r) = 1in (26), that is

2
A(r) = Ao(r) — o) =1 %’ —a(r) =1, (28)
i.e. if the following is satisfied,
/\ 2
P« Tr<<1, la(r)] < 1. (29)

@ Applying approximation (28) in (26), we get the following simple equation
linear in u(r):

ou  20u

Au=qu, thatis a2 FEfqu, u=+R-2A\. (30)
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Schwarzschild-de Sitter (SdS) metric

@ After the linearization of VR — 2A, we get

2

(R—4N)" + ;(R—4/\)’ = g(R —4N), (31)

and using (25) we obtain the following linear differential equation,

6 2 4
o + S + 720// . 730/ +
r r

4 g4, 2
. —a=q(a" + Ta + ﬁa). (32)

r4
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@ After the linearization of VR — 2A, we get

(R—4N)" + %(R—4/\)’ = g(R —4N), (31)

and using (25) we obtain the following linear differential equation,

a////+ § III+E _ ia/+

" I / 2
—a=q(a’ + —-a + = a). 2
; P a=q( roc 2 ) (32)

r4

@ Previous equation (32) has a general solution for g = (A,

a(r)fﬁ+%+0e f’<1 +-2 >+c4eﬁ’<;r 32 ) (33)

qr qg re q:z re
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Schwarzschild-de Sitter (SdS) metric

@ After the linearization of VR — 2A, we get

(R—4N)" + %(R—4/\)’ = g(R —4N), (31)

and using (25) we obtain the following linear differential equation,

a////+ § III+E _ ia/+

" I / 2
—a=q(a’ + —-a + = a). 2
; P a=q( roc 2 ) (32)

r4

@ Previous equation (32) has a general solution for g = (A,

a(r)75+%+0ef’ 1+f + GV [ L 32 . (33)
ar  gzr2 ar gzr2

@ There are four constants (C; — C4) and we want to chose them such that
the appropriate particular solution for «(r) has some physical meaning,
i.e. a(r) — 0when ¢ — 0.
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Schwarzschild-de Sitter (SdS) metric

@® One such choiceis: Ci = —6//q, Co =26/q, C3 = —6,/q; Cs = 0.
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Schwarzschild-de Sitter (SdS) metric

® One such choice is: C1 = —4d/1/q, C> =24/q, C3 = —46./q; Cs = 0.
® Cy has to vanish, since we have exclude term with eV in (33).
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Schwarzschild-de Sitter (SdS) metric

® One such choice is: C;

®

—0/4/q, C2 =26/q, C3 = —4,/q; Cs =0.
C;4 has to vanish, since we have exclude term with ev% in (33).
@ In this case solution for a(r), is

ofr) = —%(1 +o7V) + %(1 —e™V), g=cn, (34)

where § is dimensionless parameter.
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Schwarzschild-de Sitter (SdS) metric

—0/v/q, C2 =25/q, C3 = —0/q; Ca=0.

@ One such choice is: Cy
® Cy has to vanish, since we have exclude term with eV in (33).

In this case solution for «(r), is
(34)

) _ 2§ _
-1+ ) < 1) 4=
a(r) \/Gr( +e tgzll-e") a=dn
where § is dimensionless parameter.
@ Since integration constants Cy, Cs, C3 are proportional to ¢, and C4 = 0,
we reduced the number of parameters from 4 to 1. We have two free

parameters (6 and ¢) which should be determined from measurements.
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Schwarzschild-de Sitter (SdS) metric

@® One such choiceis: Ci = —6//q, Co =26/q, C3 = —6,/q; Cs = 0.
® Cy has to vanish, since we have exclude term with eV in (33).
@ In this case solution for «(r), is
__ 9 vary 4 20 (4 v _
ofr) = fr(1+e )+qr2(1 e V), g=cn, (34)
where § is dimensionless parameter.
® Since integration constants Ci, C,, Cs are proportional to §, and Cs = 0,
we reduced the number of parameters from 4 to 1. We have two free
parameters (6 and ¢) which should be determined from measurements.
@® The Taylor expansion of «(r) gives

®

a(r) = = F r+o(cr ) (35)

and we conclude that a(r) — 0 when ¢ — 0.
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The Rotation Curves of Spiral Galaxies

@ According to (34), we get

kAP LS —Var
Alr)=1- "~ 3+\/ar(1+e )

where 1, = 2GM/c?. It is clear that when ¢ — 0, obtained expression
(36) for A(r) tends to Ao(r), as necessary.

~ gz (1-e7"), a=cr @)
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@ According to (34), we get

kAP LS —Var
Alr)=1- "~ 3+\/ar(1+e )

where 1, = 2GM/c?. It is clear that when ¢ — 0, obtained expression
(36) for A(r) tends to Ao(r), as necessary.

~ gz (1-e7"), a=cr @)
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The Rotation Curves of Spiral Galaxies

@ According to (34), we get

PN RN CRNPE. L Y SRR, 1L S
Alr)=1- "~ 3+\/ar(1+e ) qr2(1 e "), q=CA (36)

where 1, = 2GM/c?. It is clear that when ¢ — 0, obtained expression
(36) for A(r) tends to Ao(r), as necessary.

The Rotation Curves of Spiral Galaxies

@ The rotation curves of spiral galaxies play an important role,
since we need them to determine the amount and distribution
of dark matter comparing to visible matter.
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The Rotation Curves of Spiral Galaxies

@ According to (34), we get

PN RN CRNPE. L Y SRR, 1L S
Alr)=1- "~ 3+\/ar(1+e ) qr2(1 e "), q=CA (36)

where 1, = 2GM/c?. It is clear that when ¢ — 0, obtained expression
(36) for A(r) tends to Ao(r), as necessary.

The Rotation Curves of Spiral Galaxies

@ The rotation curves of spiral galaxies play an important role,
since we need them to determine the amount and distribution
of dark matter comparing to visible matter.

® We want examine whether the v/ dS gravitational model gives the
possibility of describing the rotation curves of spiral galaxies.
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The Rotation Curves of Spiral Galaxies

@ We start with A(r) given by (36) and present the corresponding
gravitational potential ®(r), which is

GM  AC?r?

|,

2
o(r) = + Sa(r). (37)
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The Rotation Curves of Spiral Galaxies

@ We start with A(r) given by (36) and present the corresponding
gravitational potential ®(r), which is

GM  AC?r?

d(r) = (17A(r)):7+ 6

|,

+ C;oz(r). (37)

@ The corresponding gravitational acceleration for potential (37) is

oo
ag(r):*W
2 2
:iy_Acr+ 502(2 _1)_50 (1 3 +2>e_ﬁ,.
i 3 Va2 \\/qr 2 r \2 2,4qr qr?
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The Rotation Curves of Spiral Galaxies

@ We start with A(r) given by (36) and present the corresponding
gravitational potential ®(r), which is

GM  AC?r?

d(r) = (17A(r)):7+ 6

|,

+ C;oz(r). (37)

@ The corresponding gravitational acceleration for potential (37) is

oo
ag(r):*W
2 2
:iy_Acr+ 502(2 _1)_50 (1 3 +2>e_ﬁ,.
i 3 Va2 \\/qr 2 r \2 2,4qr qr?

@ Velocity of the rotation curve v(r) is

v(r) =/ ag(r) r (38)

CZRTN N T/ J B R PR

c’r 3 + \ar

Jar 2
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The Rotation Curves of Spiral Galaxies

@ We checked the validity of the obtained formula for the circular velocity
(38) on two cases: the Milky Way galaxy and the spiral galaxy M33.
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The Rotation Curves of Spiral Galaxies

@ We checked the validity of the obtained formula for the circular velocity
(38) on two cases: the Milky Way galaxy and the spiral galaxy M33.

@® The values of parameters ¢ and ¢ in (38) are estimated by best fitting of
measured data using the least-squares method.
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The Rotation Curves of Spiral Galaxies

®

®

()

We checked the validity of the obtained formula for the circular velocity
(38) on two cases: the Milky Way galaxy and the spiral galaxy M33.

The values of parameters ¢ and ¢ in (38) are estimated by best fitting of
measured data using the least-squares method.

Milky Way case. The Milky Way rotation curve data have taken from
recent paper Jiao, Y; Hammer, F; Wang, H.; Wang, J.; Amram, P;
Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way
rotation curve. A&A 2023, 678, A208.

Measured data for distance r, velocity v and velocity error Av are obtai-
ned by Gaia telescope and they are presented in Table 1. A pictorial
comparison of measured and calculated velocities is presented in
Figure 2.
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The Rotation Curves of Spiral Galaxies: Milky Way —Table 1

rlkpc] v[km/s] Av[km/s] V[km/s] relative errorsv[%]

9.5 221.75 3.17 217.36 1.98
10.5 223.32 3.02 220.19 1.40
11.5 220.72 3.47 221.93 0.55
12.5 222.92 3.19 222.72 0.09
13.5 224.16 3.48 222.66 0.67
14.5 221.60 4.20 221.85 0.11
15.5 218.79 4.75 220.37 0.72
16.5 216.38 4.96 218.28 0.88
17.5 213.48 6.13 215.63 1.01
18.5 209.17 4.42 212.47 1.58
19.5 206.25 4.63 208.83 1.25
20.5 202.54 4.40 204.77 1.10
21.5 197.56 4.62 200.29 1.38
22.5 197.00 3.81 195.42 0.80
23.5 191.62 12.95 190.17 0.75
24.5 187.12 8.06 184.57 1.36
25.5 181.44 19.58 178.62 1.55
26.5 175.68 24.68 172.32 1.91
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Figure: Rotation curve for the Milky Way galaxy. Red points are measured observa-

tional values from Table 1 and blue curve is computed v(r) by formula (38), where
§=19x%x1075¢=44x10"" A=10"2m—2and M = 4.28 x 10°M.
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The Rotation Curves of Spiral Galaxies: M33 —Table 2
® Spiral galaxy M33 case. We have used data for the galaxy Messier 33,
based on observations obtained at the Dominion Radio Astrophysical
Observatory and presented in Kam, S.Z.; Carignan, C.; Chemin, L.; Foster,
T.; Elson, E.; Jarrett, T.H. HI kinematics and mass distribution of Messier 33,
AJ 2017, 154, 41.
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The Rotation Curves of Spiral Galaxies: M33 —Table 2
® Spiral galaxy M33 case. We have used data for the galaxy Messier 33,
based on observations obtained at the Dominion Radio Astrophysical
Observatory and presented in Kam, S.Z.; Carignan, C.; Chemin, L.; Foster,

T.; Elson, E.; Jarrett, T.H. HI kinematics and mass distribution of Messier 33,
AJ 2017, 154, 41.

rlkpe] v[km/s] Av[km/s] V[km/s] relative errorsv[%]

0.5 42.0 2.4 35.62 15.18
1.0 58.8 1.5 49.61 15.63
1.5 69.4 0.4 59.83 13.79
2.0 79.3 4.0 68.02 14.22
2.4 86.7 1.8 73.59 15.12
2.9 91.4 3.1 79.64 12.86
3.4 94.2 4.8 84.90 9.88
3.9 96.5 5.5 89.51 7.25
4.4 99.8 3.9 93.58 6.23
4.9 102.1 1.7 97.21 4.80
5.4 103.6 0.4 100.44 3.05
5.9 105.9 0.7 103.32 2.44
6.4 105.7 1.7 105.90 0.19
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The Rotation Curves of Spiral Galaxies: M33 —Table 2

rikpc] v[km/s] Av[km/s] V[km/s] relative errorév|[%]

6.8 106.8 2.2 107.76 0.90
7.3 107.3 3.0 109.86 2.39
7.8 108.3 4.0 111.73 3.17
8.3 109.7 4.0 113.34 3.37
8.8 112.0 4.8 114.86 2.5

9.3 116.1 2.2 116.15 0.045
9.8 117.2 2.5 117.27 0.06
10.3 116.5 6.5 118.24 1.49
10.8 115.7 8.1 119.07 2.91

11.2 117.4 8.2 119.63 1.9

11.7 116.8 8.9 120.22 2.93
12.2 115.7 9.6 120.69 4.31

12.7 115.1 7.7 121.05 5.17
13.2 1171 5.1 121.30 3.58
13.7 118.2 3.2 121.45 2.75
14.2 118.4 1.4 121.50 2.62
14.7 118.2 1.8 121.47 2.76
15.1 117.5 2.4 121.38 3.30
15.6 119.6 0.8 121.19 1.33
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The Rotation Curves of Spiral Galaxies: M33 —Table 2

rikpc] v[km/s] Av[km/s] V[km/s] relative errorév[%]

16.1 118.6 1.5 120.93 1.96
16.6 122.6 0.5 120.59 1.64
171 124.1 2.9 120.17 3.16
17.6 125.0 2.2 119.69 4.24
18.1 125.5 2.5 119.15 5.06
18.6 125.2 8.1 118.54 5.32
19.1 122.0 9.8 117.87 3.38
19.5 120.4 8.5 117.29 2.58
20.0 114.0 26.6 116.52 2.21
20.5 110.0 34.6 115.70 5.18
21.0 98.7 27.4 114.82 16.33
21.5 100.1 33.4 113.89 13.77
22.0 104.3 35.2 112.91 8.25
22.5 101.2 27.4 111.88 10.56
23.0 123.5 39.1 110.81 10.27
23.5 115.3 26.7 109.69 4.86
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The Rotation Curves of Spiral Galaxies: M33 —graph
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Figure: Rotation curve for spiral galaxy M33. Red points are measured observational
values and blue line is computed v(r) by formula (38), where 6 = 5.7 x 10—,
¢=3862x10""A=10"2m2and M = 1.5 x 103M.
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@ In our previously investigations of this model, we obtained results on the
evolution of the universe, where the effects that are usually attributed to
dark energy and dark matter can be described by the nonlocality of the
gravity model v/dS.
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@ In our previously investigations of this model, we obtained results on the
evolution of the universe, where the effects that are usually attributed to
dark energy and dark matter can be described by the nonlocality of the
gravity model v/dS.

@® Here, we found the Schwarzschild-de Sitter metric in the form of A(r)
(36), what corresponds to the weak gravity approximation and the li-
nearization of nonlinear differential equation (26): a fourth-order linear
differential equation for the Schwarzschild-de Sitter metric was obtained.
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Concluding Remarks

@ In our previously investigations of this model, we obtained results on the
evolution of the universe, where the effects that are usually attributed to
dark energy and dark matter can be described by the nonlocality of the
gravity model v/dS.

@® Here, we found the Schwarzschild-de Sitter metric in the form of A(r)
(36), what corresponds to the weak gravity approximation and the li-
nearization of nonlinear differential equation (26): a fourth-order linear
differential equation for the Schwarzschild-de Sitter metric was obtained.

@ A general solution linearized equation (32) was found. A particular
solution of a(r) was found (34) such that it satisfies the necessary
condition that it tends to zero when the nonlocality vanishes.
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Concluding Remarks

@ The obtained results were tested on the rotation curves of the Milky Way
and the spiral galaxy M33: the rotation curves were observed in the
domain: 9.5 —26.5 kpc for the Milky Way galaxy and 0.5 —23.5 kpc for the
M33 galaxy.
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and the spiral galaxy M33: the rotation curves were observed in the
domain: 9.5 —26.5 kpc for the Milky Way galaxy and 0.5 —23.5 kpc for the
M33 galaxy.

® In the Lambda Cold Dark Matter model, it is assumed that dark matter
plays an important role in the mentioned domains, but there is no dark
matter in our nonlocal model.
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Concluding Remarks

()

The obtained results were tested on the rotation curves of the Milky Way

and the spiral galaxy M33: the rotation curves were observed in the

domain: 9.5 —26.5 kpc for the Milky Way galaxy and 0.5 —23.5 kpc for the

M33 galaxy.

® In the Lambda Cold Dark Matter model, it is assumed that dark matter
plays an important role in the mentioned domains, but there is no dark
matter in our nonlocal model.

® The good agreement between observational measurements and theo-

retical predictions tells us that the role of dark matter can be played by

the nonlocality in the presence of the cosmological constant A in

the /dS gravity model.
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

® Let us start with the action

1
= 5G /,/—g R d4x+ — / V=9(—5 V.oV*p — V(p))d*x.

(39)
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

® Let us start with the action

1
= 5G /,/—g R d4x+ — / V=0(—5 VupV*e — V(p))d*x.

(39)
@ By variation of the previous action with respect to metric g"* we obtain
1 1 1 1
167 GGMV + 8r G( gl“’ SOVPSO + ng’ V(‘P) - EVHSOVVW) =0.
(40)
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

® Let us start with the action

1
= 5G /,/—g R d4x+ — / V=9(—5 V.oV*p — V(p))d*x.
(39)

® By variation of the previous action with respect to metric g*” we obtain

1 1 1 1
16n GGW + 8n G( 9w VPOV o + ng V(p) - EVMOVVW) =0.

(40)
® Variation over ¢ yields Oy = V'(¢). The corresponding EOM are:

Gu =87G Ty, Op = V'(p). (41)

oy
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

® Let us start with the action

1
= 5G /,/—g R d4x+ — / V=9(—5 V.oV*p — V(p))d*x.

®

(39)
@ By variation of the previous action with respect to metric g"* we obtain
1 1 1 1
16n GGW + 8n G( 9w VPOV o + ng V(p) - EVMOVVW) =0.
(40)
® Variation over ¢ yields Oy = V'(¢). The corresponding EOM are:
Gu =87G Ty, Op = V'(p). (41)
® Now, we obtain
1, 1.
87Gp = 59"+ V(¢), 87Gp = 5¢° — V(¢). (42)
Finally, we have
87G(p + p) = ¢° 47G(p — p) = V(). (43)
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@ In the case of cosmological solution for a(t) = A t5 efil , k=0
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

@ In the case of cosmological solution for a(t) = A t5 et , k=0
@ Corresponding effective density and pressure for this solution are:

2172 + NP — ZA A 3
= N cSar_). (44
P 127G ) P="gerg(7 N — 1) (44)
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

@ In the case of cosmological solution for a(t) = A t5 efil , k=0
@ Corresponding effective density and pressure for this solution are:
2172 + SN — SN A 3

p= 127G ) P=—sergFM 1) (4

@® If we substitute the previous expressions into (43) we have

2 4, 2
@—32‘ 7/\37

21, /1 —3A (\/%£ 1
=ty -+ ¢9/\12L_42 )+C)7(45)

2\ 3N%2 2
V) =-7+"29 Tae
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

@ But we can start with another action (instead of (39)), for example

/d“x\ﬁ (R—2A++/R-2AF(O) VR - 2A)

167rG

+ 87176 / \/jg(_% VHQOVMQO — V(gp))d“x_ (46)
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

@ But we can start with another action (instead of (39)), for example

s= | /d4x\/jg(R72A+\/Fn'72/\]-'(D) VR —2N)

167G

+ 87176 / \/jg(_% VHQOVMQO — V(gp))d“x_ (46)

@ By variation of the previous action with respect to metric g*”, and then
using OvR —2A = gv/R — 2/ we obtain

1 ((GW +Ag) (14 F(@)) + 3 F (@S (VA— 2N VA~ 2A))

167G

1 1 p 1 1 B
Sl 8:G (Zg,uuv ©Vpp + Egu,, V(p) — EVMDVVSO) =0, (47)
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Model #H(R) = G(R) = v R — 2\ - Scalar Field

@ But we can start with another action (instead of (39)), for example

s= | /d4x\/jg(R72A+\/Fn'72/\]-'(D) VR —2N)

167G

+ 87176 / \/jg(_% VHQOVMQO — V(gp))d“x_ (46)

@ By variation of the previous action with respect to metric g*”, and then
using OvR —2A = gv/R — 2/ we obtain

1 ((GW +Ag) (14 F(@)) + 3 F (@S (VA— 2N VA~ 2A))

167G

1 1 p 1 1 B
Sl 8:G (Zg,uuv ©Vpp + Egu,, V(p) — EVMDVVSO) =0, (47)

... to be continued ...
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Non-trivial Christoffel symbols of Friedman— Robertson —Walker metric
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FRW metric — Christoffel symbols

Non-trivial Christoffel symbols of Friedman— Robertson —Walker metric

a > a 3 _ 4@
M == ra, == s = —
01 a 02 a 03 a
aa 1 kr 2 1
rd, = M = M= —
" k2 T _kr 27
1
s = =
3=
M =r’aa M3 =r(kr’—1) M35 = cotf
s =r*aasin®0 Fégzr(kr2—1)sin29 M35 = —sin0 cosf
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Non-trivial components of curvature tensor
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FRW metric—Curvature and Ricci

Non-trivial components of curvature tensor

. > .
__aa P& (& +k)
R0110 — W R1221 — _W

. r? & sin 0 (& + k

Roz220 = rfaa Riaz1 = — 1|n_ k(r2 )

Rozzo = I'2 aa Sin2 0 Rozzo = 7/'4 32 sin2 0 (32 -+ k)

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



FRW metric—Curvature and Ricci

Non-trivial components of curvature tensor

.. > .
__aa P& (& +k)
R0110 — W R1221 — _W
2 . 2 2
oo _r & sin?0 (& + k)
Rozo0 = r° aa Riss1 = T
Rozzo = I'2 aa Sin2 0 Rozzo = 7/'4 32 sin2 0 (32 -+ k)
Ricci tensor
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FRW metric—Curvature and Ricci

Non-trivial components of curvature tensor

. > .
__aa P& (& +k)
ROHO — 1_kr2 R1221 — _W

. r?a sin?0 (& + k

Roz220 = rfaa Riaz1 = — 1|n_ k(r2 )

Rozzo = I'2 aa Sin2 0 Rozzo = 7/'4 32 sin2 0 (32 -+ k)

Ricci tensor

-& 0 o0 o0
0 u g1 0 0 u_aé+2(é2+k)
0 0 U Qoo 0 a2

0 0 0 U Qgs3
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FRW metric— Einstein tensor

Scalar curvature
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FRW metric— Einstein tensor

Scalar curvature

6(aga+ & +k)

R= e
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FRW metric— Einstein tensor

Scalar curvature

6(aga+ & +k)

R= e

Einstein tensor
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FRW metric— Einstein tensor

Scalar curvature

S
Ao 6(aa+a +k)

aZ
Einstein tensor
Wr g 0 0
— e z 2
G = 0 V g1 0 0 7 V:2aa+za + k
0 0 —V Qg 0 a
0 0 0 —V Q33
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Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric
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Schwarzshield-de Sitter type metric—General case

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

1A 1A 1B
r81_§jv r<1)0:§§7 |'11:2§7
. 2
r rsin© 0
r;2:7E7 r(133:7 B ) r$2:75
33 = —sinfcosb, = 17 M35 = cot.
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Schwarzshield-de Sitter type metric—General case

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

o 1A 1 1A 118
o =22 =35 =25
)
r rsin“ 0
r;2:7E7 r(133:7 B ) r$2:75
33 = —sinfcosb, = 17 M35 = cot.
Non-trivial components of curvature tensor
A AN? AB A rA
Roto1 =7 <— (j) ~AB +2A> ] /‘70202—§§,
rA ., rB
Ro303 5B sin© 6, 1212 = 5
rB ., o 2B—1 .,
R1313 = §§ sin (9, Fi'2323 =r sin” 0.

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Schwarzshield-de Sitter type metric—General case
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Schwarzshield-de Sitter type metric—General case

The Ricci tensor is diagonal and its components are:
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Schwarzshield-de Sitter type metric—General case

The Ricci tensor is diagonal and its components are:

A// A/ B/ A/2 A/ A// A/ B/ A/2 B/
Ao=28"a6 “aaB "B T 2T aABr) Tam T
rA B 1 rA’ B 1 2
Fe=—2as "2 B " R33_<‘m+@‘§+1)5'" o
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Schwarzshield-de Sitter type metric—General case

The Ricci tensor is diagonal and its components are:

A// A/ B/ A/2 A/ A// A/ B/ A/2 B/
Ao=28"a6 “aaB "B T 2T aABr) Tam T
rA’ B 1 rA B 1 .2
s B BT, (-2 F 1.y .
Re=-sagtop gt Fo < 2AB 282 B )5'" o

The scalar curvature is

A" AB A 2A" 2B 2 2

R=-26" 248 * Bt

2A2B rAB ' B2 2B ' r2
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Schwarzshield-de Sitter type metric—General case

The Ricci tensor is diagonal and its components are:

A// A/ B/ A/2 A/ A// A/ B/ A/2 B/
Ao=28"a6 “aaB "B T 2T aABr) Tam T
rA’ B 1 rA B 1 .2
s B BT, (-2 F 1.y .
Re=-sagtop gt Fo < 2AB 282 B )5'" o

The scalar curvature is

A" AB A 2A" 2B 2 2

R=-26" 248 * Bt

2A2B rAB ' B2 2B ' r2

The Einstein tensor is diagonal and its components are
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Schwarzshield-de Sitter type metric—General case

The Ricci tensor is diagonal and its components are:

A// A/ B/ A/2 A/ A// A/ B/ A/2 B/
Ao=28"a6 “aaB "B T 2T aABr) Tam T
A rB’ 1 rA’ rB’ 1 .2
PR A I B A = ([ o e 2 — L { .
Re=-sagtop gt Fo < 2AB 282 B )5'" o
The scalar curvature is
R—_iﬁ+£+ A? _2A/ 2B/_i+£
~ AB  2AB2  2A2B rAB ' rB®2 2B ' r?’
The Einstein tensor is diagonal and its components are
G — AB A N A Gor — A’ rPAB rPA% N A B
=g " 2B 2 2~ 2AB ~ 4AB?  4A2B ' 2AB  2B?’
G _i/_E_,_l Gon — r2A”_r2A/B’_r2A/2+rA/_rB’ 20
"TAT T2 %= \2AB ~ 4AB2 ~ 4AB " 2AB  2B?
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Schwarzshield-de Sitter type metric—General case

The Ricci tensor is diagonal and its components are:

A// A/ B/ A/2 A/ A// A/ B/ A/2 B/
Ao=28"a6 “aaB "B T 2T aABr) Tam T
A rB’ 1 rA’ rB’ 1 .2
PR A I B A = ([ o e 2 — L { .
Re=-sagtop gt Fo < 2AB 282 B )5'" o
The scalar curvature is
R—_iﬁ+£+ A? _2A/ 2B/_i+£
~ AB  2AB2  2A2B rAB ' rB®2 2B ' r?’
The Einstein tensor is diagonal and its components are
G — AB A N A Gor — A’ rPAB rPA% N A B
=g " 2B 2 2~ 2AB ~ 4AB?  4A2B ' 2AB  2B?’
G _i/_E_,_l Gon — r2A”_r2A/B’_r2A/2+rA/_rB’ 20
"TAT T2 %= \2AB ~ 4AB2 ~ 4AB " 2AB  2B?
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Schwarzshield-de Sitter type metric— Case: B=1/A
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Schwarzshield-de Sitter type metric— Case: B=1/A

In particular, for B = 1/A we have

ds® = —A(r)df* + ﬁdr2 + r2d6? + r® sin® 0dyp”.
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Schwarzshield-de Sitter type metric— Case: B=1/A

In particular, for B = 1/A we have

ds? — —A(I’)dtz + Ldr2 4L r2de® + r? sin® Hdtpz.

A(r)
The Christoffel symbols are:
1A 1 1A )
r81 = EZ» r(130 = EAA/7 r11 = *éz, F;Z = *rA, rég = *rASIn2 0,
r?g = 17, r%s = —sinf cosd, F?g = 17, ng — cot 0.
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In particular, for B = 1/A we have

ds® = —A(r)df® + a2 4 rPae?

A(r)
The Christoffel symbols are:
o 1A 1 1 1A
r01 *EZ? rOO*EAAv r‘11 *7517
2 1 2 - 3 1
r12:77 r33:—5|n9c050, r13:77

Non-trivial components of curvature tensor are:

. 1 _ L /
Roto1 = EA , Roz02 = 2/‘\/‘\7

/

Ri212 = —%Z, Rtz = sin® 6,

A
2 A

Schwarzshield-de Sitter type metric— Case: B=1/A

+ r?sin? Hdnpz.

Moo = —rA, Tis = —rAsin®0,

ng = cot 4.

Ho303 = éAA, sin2 9,

Rezzs = r(1 — A)sin® 0.
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Schwarzshield-de Sitter type metric— Case: B=1/A
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Schwarzshield-de Sitter type metric— Case: B=1/A

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Schwarzshield-de Sitter type metric— Case: B=1/A

The Ricci tensor is diagonal and its components are:

o A 1A A
F?OO—EAA -l-;AA7 R = 5A TA
Rgz =1—-—A— I’A/, R33 = (1 = /Al = fA/) sin 0

Zoran Raki¢ On a Simple Model of Nonlocal de Sitter Gravity



Schwarzshield-de Sitter type metric— Case: B=1/A

The Ricci tensor is diagonal and its components are:

o A 1A A
F?OO—EAA -l-;AA7 R = 5A TA
Rgz =1—-—A— I’A/, R33 = (1 = /Al = fA/) sin 0

The scalar curvature is

R=-A" 2t 24,2
r r r
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Schwarzshield-de Sitter type metric— Case: B=1/A

The Ricci tensor is diagonal and its components are:

o A 1A A
F?OO—EAA -l-;AA7 R = 5A TA
Rgz =1—-—A— I’A/, R33 = (1 = /Al = fA/) sin 0

The scalar curvature is

R=-a" 2t 24,2
r r r

The Einstein tensor is presented as follows:

__AINA() A AN _A() 1 1
Goo = r 2 T G = rA(r) — r2A(r) T

. 1 2 Al / _ 1 2 Al / . 2
Goo = Er A'(r) + rA'(r), Gsz = Er A"(r)+ rA'(r) | sin® 6.
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