

On a Simple Model of Nonlocal de Sitter Gravity

Zoran Rakić

Faculty of Mathematics, University of Belgrade, Serbia

(joint work with I. Dimitrijević, B. Dragovich, and J. Stanković)

SEMINAR OF DEPARTMENT OF ASTRONOMY

Chair of Astronomy and Astrophysics, Beograd, 16. decembar, 2025.

- ⊗ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ⊗ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - Euclidean space (no constant positive or negative curvature)
 - Spherical space (positive curvature)
 - Hyperbolic space (negative curvature)
- ⊗ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space.

- ✳ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ✳ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space H^3 (of constant negative sectional curvature).
- ✳ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. [► FRW metric](#)

- ✳ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ✳ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space H^3 (of constant negative sectional curvature).
- ✳ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. [► FRW metric](#)

- ✳ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ✳ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional curvature).
- ✳ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. [► FRW metric](#)

- ✳ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ✳ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space H^3 (of constant negative sectional curvature).
- ✳ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. ► FRW metric

- ✳ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ✳ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional curvature).
- ✳ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. [► FRW metric](#)

- ✳ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ✳ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere \mathbb{S}^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional curvature).
- ✳ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a cosmic scale factor which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. [► FRW metric](#)

- ✳ GTR (or ETG) assumes that Universe is four dimensional homogeneous and isotropic pseudo-Riemannian manifold M with metric $(g_{\mu\nu})$ of signature $(1, 3)$.
- ✳ There exist three types of homogeneous and isotropic simple connected spaces of dimension 3:
 - sphere S^3 (of constant positive sectional curvature),
 - flat space \mathbb{R}^3 (of curvature equal 0),
 - hyperbolic space \mathbb{H}^3 (of constant negative sectional curvature).
- ✳ Generic metric in these spaces is of the form (Friedmann-Robertson-Walker metric (FRW)):

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right), \quad k \in \{-1, 0, 1\}, \quad (1)$$

where $a(t)$ is a **cosmic scale factor** which describes the evolution (in time) of Universe and parameter k which describes the curvature of the space. ▶ FRW metric

- ④ GTR is based on Einstein-Hilbert action:

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G c^4} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

where R is scalar curvature, $g = \det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

- ④ The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1 \quad (2)$$

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

- ④ The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho g_{00}, g_{11}p, g_{22}p, g_{33}p), \quad (3)$$

where ρ is energy density and p is pressure.

- ⊗ GTR is based on Einstein-Hilbert action:

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G c^4} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

where R is scalar curvature, $g = \det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

- ⊗ The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1 \quad (2)$$

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

- ⊗ The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho g_{00}, g_{11}p, g_{22}p, g_{33}p), \quad (3)$$

where ρ is energy density and p is pressure.

- ⊗ GTR is based on Einstein-Hilbert action:

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G c^4} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

where R is scalar curvature, $g = \det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

- ⊗ The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1 \quad (2)$$

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

- ⊗ The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho g_{00}, g_{11}p, g_{22}p, g_{33}p), \quad (3)$$

where ρ is energy density and p is pressure.

- ⊗ GTR is based on Einstein-Hilbert action:

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G c^4} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

where R is scalar curvature, $g = \det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

- ⊗ The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1 \quad (2)$$

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

- ⊗ The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho g_{00}, g_{11}p, g_{22}p, g_{33}p), \quad (3)$$

where ρ is energy density and p is pressure.

- ⊗ GTR is based on Einstein-Hilbert action:

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G c^4} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

where R is scalar curvature, $g = \det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

- ⊗ The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1 \quad (2)$$

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

- ⊗ The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho g_{00}, g_{11}p, g_{22}p, g_{33}p), \quad (3)$$

where ρ is energy density and p is pressure.

- ⊗ GTR is based on Einstein-Hilbert action:

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G c^4} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

where R is scalar curvature, $g = \det(g_{\mu\nu})$ is determinant of metric tensor, Λ is cosmological constant and \mathcal{L}_m is Lagrangian of matter.

- ⊗ The variation of the action S we obtain equations of motion:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1 \quad (2)$$

where $T_{\mu\nu}$ is the energy momentum tensor, $g_{\mu\nu}$ is metric tensor, $R_{\mu\nu}$ is Ricci tensor and R is scalar curvature.

- ⊗ The energy momentum tensor for ideal fluid (matter in cosmology) is

$$T = \text{diag}(-\rho g_{00}, g_{11}p, g_{22}p, g_{33}p), \quad (3)$$

where ρ is energy density and p is pressure.

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.

- Problem of Big Bang singularity.

- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Big Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Big Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Big Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Big Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Bing Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Big Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Big Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

- Now, Einstein equation implies Friedmann equations

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}, \quad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}.$$

- Hubble parameter describes the expansion of the Universe

$$H = \frac{\dot{a}}{a}. \quad (4)$$

- Despite to the great success of GRT, observational discoveries of 20th century imply that they could not be explained by GTR without additional matter.
- Problem of Big Bang singularity.
- It means that GRT should be modified. There are two approaches:

(A1) Dark matter and energy

(A2) Modification of GTR, i.e. modification of its Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m, \quad c = 1.$$

Dark matter and energy

- ➊ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ➋ If Einstein theory of gravity can be applied to the whole Universe then about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ➌ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ➊ The validity of General Relativity on cosmological scale is not confirmed.
- ➋ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ⊗ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ⊗ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ⊗ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ⊗ The validity of General Relativity on cosmological scale is not confirmed.
- ⊗ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ⊗ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ⊗ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ⊗ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ⊗ The validity of General Relativity on cosmological scale is not confirmed.
- ⊗ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ✳ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ✳ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ The Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ✳ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ✳ The validity of General Relativity on cosmological scale is not confirmed.
- ✳ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ✳ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ✳ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ✳ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ✳ The validity of General Relativity on cosmological scale is not confirmed.
- ✳ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ✳ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ✳ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ✳ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ✳ The validity of General Relativity on cosmological scale is not confirmed.
- ✳ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ✳ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ✳ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ✳ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ✳ The validity of General Relativity on cosmological scale is not confirmed.
- ✳ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ✳ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ✳ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ✳ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ✳ The validity of General Relativity on cosmological scale is not confirmed.
- ✳ Dark matter and dark energy are not yet detected in the laboratory experiments.

Dark matter and energy

- ✳ Dark matter is responsible for orbital speeds in galaxies, and dark energy is responsible for accelerated expansion of the Universe.
- ✳ If Einstein theory of gravity can be applied to the whole Universe then
 - ▶ the Universe contains about 5% of ordinary matter, 27% of dark matter and 68% of dark energy.
- ✳ It means that 95% of total matter, or energy, represents dark side of the Universe, which nature is unknown.

Motivation for modification of Einstein theory of gravity

- ✳ The validity of General Relativity on cosmological scale is not confirmed.
- ✳ Dark matter and dark energy are not yet detected in the laboratory experiments.

Different approaches to modification of Einstein theory of gravity

④ Einstein General Theory of Relativity

From action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

using variational methods we get field equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1,$$

where $T_{\mu\nu}$ is stress-energy tensor, $g_{\mu\nu}$ is the metric tensor, $R_{\mu\nu}$ is Ricci tensor and R

Different approaches to modification of Einstein theory of gravity

- ⊗ Einstein General Theory of Relativity

From action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

using variational methods we get field equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1.$$

where $T_{\mu\nu}$ is stress-energy tensor, $g_{\mu\nu}$ is the metric tensor, $R_{\mu\nu}$ is Ricci tensor and R

Different approaches to modification of Einstein theory of gravity

- ⊗ Einstein General Theory of Relativity

From action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

using variational methods we get field equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1.$$

where $T_{\mu\nu}$ is stress-energy tensor, $g_{\mu\nu}$ is the metric tensor, $R_{\mu\nu}$ is Ricci tensor and R

Different approaches to modification of Einstein theory of gravity

- ④ Einstein General Theory of Relativity

From action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

using variational methods we get field equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1.$$

where $T_{\mu\nu}$ is stress-energy tensor, $g_{\mu\nu}$ is the metric tensor, $R_{\mu\nu}$ is Ricci tensor and R

Different approaches to modification of Einstein theory of gravity

- ⊗ Einstein General Theory of Relativity

From action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

using variational methods we get field equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1.$$

where $T_{\mu\nu}$ is stress-energy tensor, $g_{\mu\nu}$ is the metric tensor, $R_{\mu\nu}$ is Ricci tensor and R

Different approaches to modification of Einstein theory of gravity

- ⊗ Einstein General Theory of Relativity

From action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

using variational methods we get field equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad c = 1.$$

where $T_{\mu\nu}$ is stress-energy tensor, $g_{\mu\nu}$ is the metric tensor, $R_{\mu\nu}$ is Ricci tensor and R

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \rightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$G = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

- First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

$$S = \int \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

modification

$$R \longrightarrow f(R, \Lambda, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots), \quad \square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu$$

Gauss-Bonnet invariant

$$\mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\alpha\beta\mu\nu}R_{\alpha\beta\mu\nu}$$

■ $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha G}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\nu}^2, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha \mathcal{G}}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha \mathcal{G}}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha \mathcal{G}}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha \mathcal{G}}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha \mathcal{G}}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha \mathcal{G}}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

■ nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

- $f(R)$ modified gravity

$$S = \int \left(\frac{f(R)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

- Gauss-Bonnet modified gravity

$$S = \int \left(\frac{R + \alpha \mathcal{G}}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

- nonlocal modified gravity

$$S = \int \left(\frac{F(R, R_{\mu\nu}, R_{\mu\beta\nu}^\alpha, \square, \dots)}{16\pi G} + \mathcal{L}_m \right) \sqrt{-g} d^4x$$

- Under nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $F(R, \square)$, where $\square = \nabla_\mu \nabla^\mu$ is d'Alembert operator and ∇_μ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature $(1,3)$. We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} d^4x,$$

where $\mathcal{F}(\square) = \sum_{n=0}^{\infty} f_n \square^n$ is an analytic function of \square , and Λ is cosmological constant.

- In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(\ddot{a}\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \square R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- Under nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $F(R, \square)$, where $\square = \nabla_\mu \nabla^\mu$ is d'Alembert operator and ∇_μ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

where $\mathcal{F}(\square) = \sum_{n=0}^{\infty} f_n \square^n$ is an analytic function of \square , and Λ is cosmological constant.

- In the case of **FRW** metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \square R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- Under nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $\mathcal{F}(R, \square)$, where $\square = \nabla_\mu \nabla^\mu$ is d'Alembert operator and ∇_μ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature (1,3). We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} d^4x,$$

where $\mathcal{F}(\square) = \sum_{n=0}^{\infty} f_n \square^n$ is an analytic function of \square , and Λ is cosmological constant.

- In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \square R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- Under nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $\mathcal{F}(R, \square)$, where $\square = \nabla_\mu \nabla^\mu$ is d'Alembert operator and ∇_μ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature $(1,3)$. We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

where $\mathcal{F}(\square) = \sum_{n=0}^{\infty} f_n \square^n$ is an analytic function of \square , and Λ is cosmological constant.

- In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \square R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- Under nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $F(R, \square)$, where $\square = \nabla_\mu \nabla^\mu$ is d'Alembert operator and ∇_μ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature $(1,3)$. We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

where $\mathcal{F}(\square) = \sum_{n=0}^{\infty} f_n \square^n$ is an analytic function of \square , and Λ is cosmological constant.

- In the case of FRW metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \square R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- Under nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $F(R, \square)$, where $\square = \nabla_\mu \nabla^\mu$ is d'Alembert operator and ∇_μ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature $(1,3)$. We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

where $\mathcal{F}(\square) = \sum_{n=0}^{\infty} f_n \square^n$ is an analytic function of \square , and Λ is cosmological constant.

- In the case of **FRW** metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \square R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- Under nonlocal modification of gravity we understand replacement of the scalar curvature R in the Einstein-Hilbert action by a suitable function $F(R, \square)$, where $\square = \nabla_\mu \nabla^\mu$ is d'Alembert operator and ∇_μ denotes the covariant derivative
- Let M be a four-dimensional pseudo-Riemannian manifold with metric $(g_{\mu\nu})$ of signature $(1,3)$. We consider a class of nonlocal gravity models without matter, given by the following action

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

where $\mathcal{F}(\square) = \sum_{n=0}^{\infty} f_n \square^n$ is an analytic function of \square , and Λ is cosmological constant.

- In the case of **FRW** metric the scalar curvature and d'Alambert operator are given by

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}, \quad \square R = -\ddot{R} - 3H\dot{R}, \quad H = \frac{\dot{a}}{a}.$$

- For calculating variation of the action, $\delta S = \frac{1}{16\pi G} \delta S_0 + \delta S_1$, we need the following

Lemma 1. For any two scalar functions \mathcal{G} and \mathcal{H} , hold

$$\int_M \mathcal{H} \delta(\sqrt{-g}) d^4x = -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H} \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\int_M \mathcal{H} \delta R \sqrt{-g} d^4x = \int_M (R_{\mu\nu} \mathcal{H} - K_{\mu\nu} \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\begin{aligned} \int_M \mathcal{H} \delta(\mathcal{F}(\square) \mathcal{G}) \sqrt{-g} d^4x &= \int_M (R_{\mu\nu} - K_{\mu\nu}) (\mathcal{G}' \mathcal{F}(\square) \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ &\quad + \sum_{n=1}^{\infty} \frac{t_n}{2} \sum_{l=0}^{n-1} \int_M S_{\mu\nu} (\square^l \mathcal{H}, \square^{n-1-l} \mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} d^4x, \end{aligned}$$

where

$$K_{\mu\nu} = \nabla_\mu \nabla_\nu - g_{\mu\nu} \square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu} \nabla^\lambda A \nabla_\lambda B - 2 \nabla_\mu A \nabla_\nu B + g_{\mu\nu} A \square B,$$

- For calculating variation of the action, $\delta S = \frac{1}{16\pi G} \delta S_0 + \delta S_1$, we need the following

Lemma 1. For any two scalar functions \mathcal{G} and \mathcal{H} hold

$$\int_M \mathcal{H} \delta(\sqrt{-g}) d^4x = -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H} \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\int_M \mathcal{H} \delta R \sqrt{-g} d^4x = \int_M (R_{\mu\nu} \mathcal{H} - K_{\mu\nu} \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\begin{aligned} \int_M \mathcal{H} \delta(\mathcal{F}(\square) \mathcal{G}) \sqrt{-g} d^4x &= \int_M (R_{\mu\nu} - K_{\mu\nu}) (\mathcal{G}' \mathcal{F}(\square) \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ &+ \sum_{n=1}^{\infty} \frac{f_n}{2} \sum_{l=0}^{n-1} \int_M S_{\mu\nu}(\square^l \mathcal{H}, \square^{n-1-l} \mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned}$$

where

$$K_{\mu\nu} = \nabla_{\mu} \nabla_{\nu} - g_{\mu\nu} \square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu} \nabla^{\alpha} A \nabla_{\alpha} B - 2 \nabla_{\mu} A \nabla_{\nu} B + g_{\mu\nu} A \square B,$$

- For calculating variation of the action, $\delta S = \frac{1}{16\pi G} \delta S_0 + \delta S_1$, we need the following

Lemma 1. For any two scalar functions \mathcal{G} and \mathcal{H} hold

$$\int_M \mathcal{H} \delta(\sqrt{-g}) d^4x = -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H} \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\int_M \mathcal{H} \delta R \sqrt{-g} d^4x = \int_M (R_{\mu\nu} \mathcal{H} - K_{\mu\nu} \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\begin{aligned} \int_M \mathcal{H} \delta(\mathcal{F}(\square) \mathcal{G}) \sqrt{-g} d^4x &= \int_M (R_{\mu\nu} - K_{\mu\nu}) (\mathcal{G}' \mathcal{F}(\square) \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ &+ \sum_{n=1}^{\infty} \frac{f_n}{2} \sum_{l=0}^{n-1} \int_M S_{\mu\nu}(\square^l \mathcal{H}, \square^{n-1-l} \mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned}$$

where

$$K_{\mu\nu} = \nabla_{\mu} \nabla_{\nu} - g_{\mu\nu} \square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu} \nabla^{\alpha} A \nabla_{\alpha} B - 2 \nabla_{\mu} A \nabla_{\nu} B + g_{\mu\nu} A \square B,$$

- For calculating variation of the action, $\delta S = \frac{1}{16\pi G} \delta S_0 + \delta S_1$, we need the following

Lemma 1. For any two scalar functions \mathcal{G} and \mathcal{H} hold

$$\int_M \mathcal{H} \delta(\sqrt{-g}) d^4x = -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H} \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\int_M \mathcal{H} \delta R \sqrt{-g} d^4x = \int_M (R_{\mu\nu} \mathcal{H} - K_{\mu\nu} \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x,$$

$$\begin{aligned} \int_M \mathcal{H} \delta(\mathcal{F}(\square) \mathcal{G}) \sqrt{-g} d^4x &= \int_M (R_{\mu\nu} - K_{\mu\nu}) (\mathcal{G}' \mathcal{F}(\square) \mathcal{H}) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ &\quad + \sum_{n=1}^{\infty} \frac{f_n}{2} \sum_{l=0}^{n-1} \int_M S_{\mu\nu}(\square^l \mathcal{H}, \square^{n-1-l} \mathcal{G}) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned}$$

where

$$K_{\mu\nu} = \nabla_\mu \nabla_\nu - g_{\mu\nu} \square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu} \nabla^\alpha A \nabla_\alpha B - 2 \nabla_\mu A \nabla_\nu B + g_{\mu\nu} A \square B,$$

- The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x, \quad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

- Using previous theorem we find the variation of S_1 ,

$$\begin{aligned} \delta S_1 = & -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ & + \int_M \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned} \quad (6)$$

- Since, $S = \frac{1}{16\pi G} S_0 + S_1$, finally we get equations of motion (EOM).

- The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x, \quad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

- Using previous theorem we find the variation of S_1 ,

$$\begin{aligned} \delta S_1 = & -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ & + \int_M \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned} \quad (6)$$

- Since, $S = \frac{1}{16\pi G} S_0 + S_1$, finally we get equations of motion (EOM).

- The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x, \quad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

- Using previous theorem we find the variation of S_1 ,

$$\begin{aligned} \delta S_1 = & -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ & + \int_M \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned} \quad (6)$$

- Since, $S = \frac{1}{16\pi G} S_0 + S_1$, finally we get equations of motion (EOM).

- The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x, \quad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

- Using previous theorem we find the variation of S_1 ,

$$\begin{aligned} \delta S_1 = & -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ & + \int_M \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned} \quad (6)$$

- Since, $S = \frac{1}{16\pi G} S_0 + S_1$, finally we get equations of motion (EOM).

- The action S_0 is Einstein-Hilbert action without matter its variation is

$$\delta S_0 = \int_M G_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x + \Lambda \int_M g_{\mu\nu} \sqrt{-g} \delta g^{\mu\nu} d^4x, \quad (5)$$

where $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ is Einstein tensor.

- Using previous theorem we find the variation of S_1 ,

$$\begin{aligned} \delta S_1 = & -\frac{1}{2} \int_M g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \delta g^{\mu\nu} \sqrt{-g} d^4x \\ & + \int_M \left(R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu} \right) \delta g^{\mu\nu} \sqrt{-g} d^4x. \end{aligned} \quad (6)$$

- Since, $S = \frac{1}{16\pi G} S_0 + S_1$, finally we get equations of motion (EOM).

Theorem 2 (EOM) The equations of motion for system given by S are:

$$\tilde{G}_{\mu\nu} = 0, \quad (7)$$

where

$$\tilde{G}_{\mu\nu} = \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2} g_{\mu\nu} \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) + R_{\mu\nu} W - K_{\mu\nu} W + \frac{1}{2} \Omega_{\mu\nu},$$

$$\Omega_{\mu\nu} = \sum_{n=1}^{\infty} f_n \sum_{i=0}^{n-1} S_{\mu\nu}(\square^i \mathcal{H}(R), \square^{n-1-i} \mathcal{G}(R)),$$

$$K_{\mu\nu} = \nabla_{\mu} \nabla_{\nu} - g_{\mu\nu} \square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu} \nabla^{\alpha} A \nabla_{\alpha} B - 2 \nabla_{\mu} A \nabla_{\nu} B + g_{\mu\nu} A \square B,$$

$$W = \mathcal{H}'(R) \mathcal{F}(\square) \mathcal{G}(R) + \mathcal{G}'(R) \mathcal{F}(\square) \mathcal{H}(R).$$

- ⊕ Let us note that $\nabla^{\mu} \tilde{G}_{\mu\nu} = 0$.
- ⊕ EOM are invariant on the replacement of functions \mathcal{G} and \mathcal{H} in S .

Theorem 2 (EOM) The equations of motion for system given by S are:

$$\tilde{G}_{\mu\nu} = 0, \quad (7)$$

where

$$\tilde{G}_{\mu\nu} = \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2}g_{\mu\nu}\mathcal{H}(R)\mathcal{F}(\square)\mathcal{G}(R) + R_{\mu\nu}W - K_{\mu\nu}W + \frac{1}{2}\Omega_{\mu\nu},$$

$$\Omega_{\mu\nu} = \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} S_{\mu\nu}(\square^l \mathcal{H}(R), \square^{n-1-l} \mathcal{G}(R)),$$

$$K_{\mu\nu} = \nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu}\nabla^{\alpha}A\nabla_{\alpha}B - 2\nabla_{\mu}A\nabla_{\nu}B + g_{\mu\nu}A\square B,$$

$$W = \mathcal{H}'(R)\mathcal{F}(\square)\mathcal{G}(R) + \mathcal{G}'(R)\mathcal{F}(\square)\mathcal{H}(R).$$

⊕ Let us note that $\nabla^{\mu}\tilde{G}_{\mu\nu} = 0$.

⊕ EOM are invariant on the replacement of functions \mathcal{G} and \mathcal{H} in S .

Theorem 2 (EOM) The equations of motion for system given by S are:

$$\tilde{G}_{\mu\nu} = 0, \quad (7)$$

where

$$\tilde{G}_{\mu\nu} = \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2}g_{\mu\nu}\mathcal{H}(R)\mathcal{F}(\square)\mathcal{G}(R) + R_{\mu\nu}W - K_{\mu\nu}W + \frac{1}{2}\Omega_{\mu\nu},$$

$$\Omega_{\mu\nu} = \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} S_{\mu\nu}(\square^l \mathcal{H}(R), \square^{n-1-l} \mathcal{G}(R)),$$

$$K_{\mu\nu} = \nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu}\nabla^{\alpha}A\nabla_{\alpha}B - 2\nabla_{\mu}A\nabla_{\nu}B + g_{\mu\nu}A\square B,$$

$$W = \mathcal{H}'(R)\mathcal{F}(\square)\mathcal{G}(R) + \mathcal{G}'(R)\mathcal{F}(\square)\mathcal{H}(R).$$

⊕ Let us note that $\nabla^{\mu}\tilde{G}_{\mu\nu} = 0$.

⊕ EOM are invariant on the replacement of functions \mathcal{G} and \mathcal{H} in S .

Theorem 2 (EOM) The equations of motion for system given by S are:

$$\tilde{G}_{\mu\nu} = 0, \quad (7)$$

where

$$\tilde{G}_{\mu\nu} = \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2}g_{\mu\nu}\mathcal{H}(R)\mathcal{F}(\square)\mathcal{G}(R) + R_{\mu\nu}W - K_{\mu\nu}W + \frac{1}{2}\Omega_{\mu\nu},$$

$$\Omega_{\mu\nu} = \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} S_{\mu\nu}(\square^l \mathcal{H}(R), \square^{n-1-l} \mathcal{G}(R)),$$

$$K_{\mu\nu} = \nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu}\nabla^{\alpha}A\nabla_{\alpha}B - 2\nabla_{\mu}A\nabla_{\nu}B + g_{\mu\nu}A\square B,$$

$$W = \mathcal{H}'(R)\mathcal{F}(\square)\mathcal{G}(R) + \mathcal{G}'(R)\mathcal{F}(\square)\mathcal{H}(R).$$

- ✳ Let us note that $\nabla^{\mu}\tilde{G}_{\mu\nu} = 0$.
- ✳ EOM are invariant on the replacement of functions \mathcal{G} and \mathcal{H} in S .

Theorem 2 (EOM) The equations of motion for system given by S are:

$$\tilde{G}_{\mu\nu} = 0, \quad (7)$$

where

$$\tilde{G}_{\mu\nu} = \frac{G_{\mu\nu} + \Lambda g_{\mu\nu}}{16\pi G} - \frac{1}{2}g_{\mu\nu}\mathcal{H}(R)\mathcal{F}(\square)\mathcal{G}(R) + R_{\mu\nu}W - K_{\mu\nu}W + \frac{1}{2}\Omega_{\mu\nu},$$

$$\Omega_{\mu\nu} = \sum_{n=1}^{\infty} f_n \sum_{l=0}^{n-1} S_{\mu\nu}(\square^l \mathcal{H}(R), \square^{n-1-l} \mathcal{G}(R)),$$

$$K_{\mu\nu} = \nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\square,$$

$$S_{\mu\nu}(A, B) = g_{\mu\nu}\nabla^{\alpha}A\nabla_{\alpha}B - 2\nabla_{\mu}A\nabla_{\nu}B + g_{\mu\nu}A\square B,$$

$$W = \mathcal{H}'(R)\mathcal{F}(\square)\mathcal{G}(R) + \mathcal{G}'(R)\mathcal{F}(\square)\mathcal{H}(R).$$

- ✳ Let us note that $\nabla^{\mu}\tilde{G}_{\mu\nu} = 0$.
- ✳ EOM are invariant on the replacement of functions \mathcal{G} and \mathcal{H} in S .

- ④ If we take

$\mathcal{F}(q) = \mathcal{F}(R)$ and

$\mathcal{G}(q) = \mathcal{G}(R)$ then the equations of motion reduce to the EOM of GR

$\mathcal{G}_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}'(q) \mathcal{G}^2 + 2\mathcal{F}(q)(R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' = 0$

$$\mathcal{G}_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}'(q) \mathcal{G}^2 + 2\mathcal{F}(q)(R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' = 0 \quad (8)$$

$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

- ⑤ If we suppose that the manifold M is endowed with FRW metric, then we have just

- ⊗ If we take

$\mathcal{G} = \mathcal{G}(q)$ and

$\mathcal{G}' = \mathcal{G}'(q)$ then the equations of motion reduce to the following form

$\mathcal{G}_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q) (R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$

we obtain

$$\mathcal{G}_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q) (R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \quad (8)$$

$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

- ⊗ If we suppose that the manifold \mathcal{M} is endowed with **FRW** metric, then we have just two linearly independent equations: trace and **00**-equation.

- ✳ If we take

- ✳ $\mathcal{H}(R) = \mathcal{G}(R)$ and

- ✳ $\mathcal{G}(R)$ be an eigenfunction of the corresponding d'Alembert-Beltrami \square operator: $\square \mathcal{G}(R) = q \mathcal{G}(R)$, and consequently $\mathcal{F}(\square) \mathcal{G}(R) = \mathcal{F}(q) \mathcal{G}(R)$,

▶ we obtain

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q)(R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \quad (8)$$

$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

- ✳ If we suppose that the manifold M is endowed with **FRW** metric, then we have just ▶ two linearly independent equations: trace and **00**-equation.

- ✳ If we take

- ✳ $\mathcal{H}(R) = \mathcal{G}(R)$ and

- ✳ $\mathcal{G}(R)$ be an eigenfunction of the corresponding d'Alembert-Beltrami \square operator: $\square \mathcal{G}(R) = q \mathcal{G}(R)$, and consequently $\mathcal{F}(\square) \mathcal{G}(R) = \mathcal{F}(q) \mathcal{G}(R)$,

↳ we obtain

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q)(R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \quad (8)$$

$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

- ✳ If we suppose that the manifold M is endowed with **FRW** metric, then we have just ↳ two linearly independent equations: trace and **00**-equation.

- ✳ If we take

- ✳ $\mathcal{H}(R) = \mathcal{G}(R)$ and

- ✳ $\mathcal{G}(R)$ be an eigenfunction of the corresponding d'Alembert-Beltrami \square operator: $\square \mathcal{G}(R) = q \mathcal{G}(R)$, and consequently $\mathcal{F}(\square) \mathcal{G}(R) = \mathcal{F}(q) \mathcal{G}(R)$,

▶ we obtain

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q)(R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \quad (8)$$

$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

- ✳ If we suppose that the manifold M is endowed with FRW metric, then we have just ▶ two linearly independent equations: trace and 00-equation.

- ✳ If we take

- ✳ $\mathcal{H}(R) = \mathcal{G}(R)$ and

- ✳ $\mathcal{G}(R)$ be an eigenfunction of the corresponding d'Alembert-Beltrami \square operator: $\square \mathcal{G}(R) = q \mathcal{G}(R)$, and consequently $\mathcal{F}(\square) \mathcal{G}(R) = \mathcal{F}(q) \mathcal{G}(R)$,

▶ we obtain

$$G_{\mu\nu} + \Lambda g_{\mu\nu} - \frac{g_{\mu\nu}}{2} \mathcal{F}(q) \mathcal{G}^2 + 2\mathcal{F}(q)(R_{\mu\nu} - K_{\mu\nu}) \mathcal{G} \mathcal{G}' \quad (8)$$

$$+ \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\mathcal{G}, \mathcal{G}) = 0.$$

- ✳ If we suppose that the manifold M is endowed with **FRW** metric, then we have just ▶ two linearly independent equations: trace and **00**-equation.

② Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n,$
5. $R = \text{const.}$

- Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} d^4x,$$

for the following cases:

- $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
- $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
- $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
- $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
- $R = \text{const.}$

- ✳️ Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
5. $R = \text{const.}$

- ✳ Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
5. $R = \text{const.}$

- ✳️ Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
5. $R = \text{const.}$

- ✳ Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
5. $R = \text{const.}$

- ✳ Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
5. $R = \text{const.}$

- ✳ Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
5. $R = \text{const.}$

- ✳ Earlier, we considered models of nonlocal gravity without matter which are described by the action,

$$S = \int_M \left(\frac{R - 2\Lambda}{16\pi G} + \mathcal{H}(R) \mathcal{F}(\square) \mathcal{G}(R) \right) \sqrt{-g} \, d^4x,$$

for the following cases:

1. $\mathcal{H}(R) = R, \mathcal{G}(R) = R,$
2. $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R,$
3. $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q,$
4. $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m,$
5. $R = \text{const.}$

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR$, $c \in \mathbb{R}^+$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR$, $c \in \mathbb{R}^+$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR$, $c \in \mathbb{R}^+$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR$, $c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR$, $c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR$, $c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR$, $c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR, c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR, c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR, c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

1. model $\mathcal{H}(R) = R, \mathcal{G}(R) = R$.

- Using ansatz $\square R = rR + s$ we found three types of non-singular bounded solutions for the scalar factor $a(t) = a_0(\sigma e^{\lambda t} + \tau e^{-\lambda t})$.
- Solutions exist for all three values of parameter $k = 0, \pm 1$, under certain conditions on function $\mathcal{F}(\square)$, and parameters $\sigma, \tau, \lambda, \Lambda, k$.
- Obtained results generalize known cases in literature: in the first case $a(t) = a_0 \cosh(\sqrt{\frac{\Lambda}{3}}t)$, in the second and third case for $k = 0$ we obtain de Sitter solution.
- All obtained solutions satisfy $\ddot{a}(t) = \lambda^2 a(t) > 0$, i.e. are consistent with observational data.

2. model $\mathcal{H}(R) = R^{-1}, \mathcal{G}(R) = R$.

- Non-locality, $R^{-1}\mathcal{F}(\square)R$, is invariant to transformation $R \rightarrow cR, c \in \mathbb{R}^*$.
- there are cosmological solutions of form $a(t) = a_0|t - t_0|^\alpha$, in the case $k = 0$, for $\alpha \neq 0, 1/2$ and $3\alpha \in 1 + 2\mathbb{N}$, in cases $k \neq 0$, for $\alpha = 1$.
- Case $a(t) = |t - t_0|$ for $k = -1$ corresponds to Milne's model.

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q$.

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n$.

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $t = m\gamma, n = 0, R_0 = \gamma, m = \frac{3}{2}$
- $t = m\gamma, n = 0, R_0 = \frac{3}{2}\gamma, m = 1$
- $t = m\gamma, n = \frac{1}{2}, R_0 = \frac{3}{2}\gamma, m = 1$
- $t = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{2}$
- $t = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q$.

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12}t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n$.

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12}t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{3}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{3}{2}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{3}{2}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{2}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

• $t = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$

• $t = m\gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{2}$

• $t = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

• $t = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$

• $t = m\gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{2}$

• $t = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

• $t = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$

• $t = m\gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{2}$

• $t = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

• $t = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$

• $t = m\gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = \frac{2}{3}\gamma, m = 1$

• $t = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{2}$

• $t = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^n.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^n.$$

- Using this ansatz we obtained the following five solutions:

- $t = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $t = m\gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = 1$
- $t = m\gamma, n = \frac{1}{2}, R_0 = \frac{2}{3}\gamma, m = 1$
- $t = m\gamma, n = \frac{1}{3}, R_0 = 3\gamma, m = -\frac{1}{3}$
- $t = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $t = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $t = m\gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = 1$
- $t = m\gamma, n = \frac{1}{2}, R_0 = \frac{2}{3}\gamma, m = 1$
- $t = m\gamma, n = \frac{1}{3}, R_0 = 3\gamma, m = -\frac{1}{3}$
- $t = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12}t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12}t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

• $t = 0, \gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$

• $t = 0, \gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

• $t = 0, \gamma, n = \frac{1}{2}, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

• $t = 0, \gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{2}$

• $t = 0, \gamma, n = \frac{2m+1}{3}, R_0 = \frac{2}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{2}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{4}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{4}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{\gamma}{3}, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{4}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{4}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{\gamma}{3}, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{4}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{4}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{\gamma}{3}, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{4}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{4}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{\gamma}{3}, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{4}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{4}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{\gamma}{3}, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{4}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{4}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

3. model $\mathcal{H}(R) = R^p, \mathcal{G}(R) = R^q, p \geq q.$

- We considered case with scale factor in the form $a(t) = a_0 \exp(-\frac{\gamma}{12} t^2)$
- For $p = q = 1$ there are infinite number of solutions, and constants γ and Λ satisfy $\gamma = -12\Lambda$.
- In other cases we proved existence of unique solution, for arbitrary $\gamma \in \mathbb{R}$. We explicitly found solutions for $1 \leq q \leq p \leq 4$.

4. model $\mathcal{H}(R) = (R + R_0)^m, \mathcal{G}(R) = (R + R_0)^m.$

- We considered scale factor and ansatz of the form

$$a(t) = At^n \exp(-\frac{\gamma}{12} t^2) \quad \text{and} \quad \square(R + R_0)^m = r(R + R_0)^m.$$

- Using this ansatz we obtained the following five solutions:

- $r = m\gamma, n = 0, R_0 = \gamma, m = \frac{1}{2}$
- $r = m\gamma, n = 0, R_0 = \frac{\gamma}{3}, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = \frac{4}{3}\gamma, m = 1$
- $r = m\gamma, n = \frac{1}{2}, R_0 = 3\gamma, m = -\frac{1}{4}$
- $r = m\gamma, n = \frac{2m+1}{3}, R_0 = \frac{7}{3}\gamma, m = \frac{1}{2}$

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0$, $m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{3}{2})$ and $\mathcal{F}'(\frac{3}{2})$.
- In the case $n = \frac{2}{3}$, $m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{3}{2})$ and $\mathcal{F}'(\frac{3}{2})$ which satisfy $\Lambda = -\frac{7}{8}\gamma$.
- In the case $n = \frac{1}{2}$, $m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0$, $m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{3}{2})$ and $\mathcal{F}'(\frac{3}{2})$.
- In the case $n = \frac{2}{3}$, $m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{3}{2})$ and $\mathcal{F}'(\frac{3}{2})$ which satisfy $\Lambda = -\frac{7}{8}\gamma$.
- In the case $n = \frac{1}{2}$, $m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0, m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}, m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}, m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0, m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}, m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}, m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0$, $m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}$, $m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}$, $m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0, m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}, m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}, m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0, m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}, m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}, m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0$, $m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}$, $m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}$, $m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^m$.

- In the case $n = 0$, $m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}$, $m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}$, $m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

4. model $\mathcal{H}(R) = (R + R_0)^m$, $\mathcal{G}(R) = (R + R_0)^n$.

- In the case $n = 0, m = \frac{1}{2}$ we found unique solution for arbitrary $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$.
- In the case $n = \frac{2}{3}, m = \frac{1}{2}$ we found unique solution for $\mathcal{F}(\frac{\gamma}{2})$ and $\mathcal{F}'(\frac{\gamma}{2})$ which satisfy $\Lambda = -\frac{7}{6}\gamma$.
- In the case $n = \frac{1}{2}, m = -\frac{1}{4}$ there is no solutions of EOM.

5. model $R = \text{const.}$

- If $R = R_0 > 0$, then there exist non-singlar solutions for all three values of parameter $k = 0, \pm 1$, which are bounded in the cases $k = 0, 1$.
- If $R = R_0 = 0$ then exists Milne's solution $a(t) = |t + \frac{\sigma}{2}|$.
- If $R = R_0 < 0$, then there exists non-trivial singular cyclic solution $a(t) = \sqrt{\frac{-12}{R_0}} |\cos \frac{1}{2}(\sqrt{-\frac{R_0}{3}}t - \varphi)|$ za $k = -1$.
- Case $R_0 = 0$ is considered as an limit case when $R_0 \rightarrow 0$, and in both cases $R_0 < 0$ and $R_0 > 0$, we obtain Minkowski space.

- Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

$$(M4) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\square)(R - 4\Lambda)) \sqrt{-g} d^4x,$$

$$(MS) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x,$$

where $P(R)$ and $Q(R)$ are some differentiable functions of R , while $\mathcal{F}(\square) = \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$, $\square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is **limit case** of the action (MS) since: the expansion of $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} \sqrt{1 - \frac{R}{2\Lambda}}$ where $|R| \ll |2\Lambda|$.
- Linear approximation in $R/2\Lambda$ gives $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} (1 - \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda} \simeq -\frac{R}{8\Lambda} (R - 4\Lambda) \mathcal{F}(\square) (R - 4\Lambda).$$

- Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

$$(M4) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\square)(R - 4\Lambda)) \sqrt{-g} d^4x,$$

$$(MS) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x,$$

where $P(R)$ and $Q(R)$ are some differentiable functions of R , while $\mathcal{F}(\square) = \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$, $\square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is **limit case** of the action (MS) since: the expansion of $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} \sqrt{1 - \frac{R}{2\Lambda}}$ where $|R| \ll |2\Lambda|$.
- Linear approximation in $R/2\Lambda$ gives $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} (1 - \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda} \simeq -\frac{R}{8\Lambda} (R - 4\Lambda) \mathcal{F}(\square) (R - 4\Lambda),$$

- Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

$$(M4) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\square)(R - 4\Lambda)) \sqrt{-g} d^4x,$$

$$(MS) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x,$$

where $P(R)$ and $Q(R)$ are some differentiable functions of R , while $\mathcal{F}(\square) = \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$, $\square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is limit case of the action (MS) since: the expansion of $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} \sqrt{1 - \frac{R}{2\Lambda}}$ where $|R| \ll |2\Lambda|$.
- Linear approximation in $R/2\Lambda$ gives $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} (1 - \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda} \simeq -\frac{R}{8\Lambda} (R - 4\Lambda) \mathcal{F}(\square) (R - 4\Lambda),$$

- Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

$$(M4) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\square)(R - 4\Lambda)) \sqrt{-g} d^4x,$$

$$(MS) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x,$$

where $P(R)$ and $Q(R)$ are some differentiable functions of R , while $\mathcal{F}(\square) = \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$, $\square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is **limit case** of the action (MS) since: the expansion of $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} \sqrt{1 - \frac{R}{2\Lambda}}$ where $|R| \ll |2\Lambda|$.
- Linear approximation in $R/2\Lambda$ gives $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} (1 - \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda} \simeq -\frac{R}{8\Lambda} (R - 4\Lambda) \mathcal{F}(\square) (R - 4\Lambda),$$

- Recently, we have considered classes of nonlocal gravity models with cosmological constant Λ and without matter, given by

$$(M4) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + (R - 4\Lambda) \mathcal{F}(\square)(R - 4\Lambda)) \sqrt{-g} d^4x,$$

$$(MS) \quad S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x,$$

where $P(R)$ and $Q(R)$ are some differentiable functions of R , while $\mathcal{F}(\square) = \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$, $\square = \nabla_\mu \nabla^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$ is d'Alembert-Beltrami operator and Λ is cosmological constant.

- The action (M4) is **limit case** of the action (MS) since: the expansion of $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} \sqrt{1 - \frac{R}{2\Lambda}}$ where $|R| \ll |2\Lambda|$.
- Linear approximation in $R/2\Lambda$ gives $\sqrt{R - 2\Lambda} = \sqrt{-2\Lambda} (1 - \frac{R}{4\Lambda})$, then the nonlocal term in (MS) becomes

$$\sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda} \simeq -\frac{R}{8\Lambda} (R - 4\Lambda) \mathcal{F}(\square) (R - 4\Lambda),$$

- Let us consider model (MS) in more details, so we

$$S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x, \quad (9)$$

where $\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$

- It is a $\mathcal{O}(G)$ theory since the EOM (8), for $\mathcal{G}(R) = \sqrt{R - 2\Lambda}$, is simplified to

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu} (\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) = 0, \quad (10)$$

where we take $q = \zeta\Lambda$.

- It is evident that EOM (10) are satisfied if $\mathcal{F}(q) = -1$ and $\mathcal{F}'(q) = 0$.
- One such nonlocal operator $\mathcal{F}(\square)$ is

$$\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} \tilde{f}_n \left[\left(\frac{\square}{q} \right)^n + \left(\frac{q}{\square} \right)^n \right] = 1 - \frac{1}{2e} \left(\frac{\square}{q} e^{\frac{\square}{q}} + \frac{q}{\square} e^{\frac{q}{\square}} \right), \quad q \neq 0.$$

- Let us consider model (MS) in more details, so we

$$S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x, \quad (9)$$

where $\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$

- It is a very special case since the EOM (8), for $\mathcal{G}(R) = \sqrt{R - 2\Lambda}$, is simplified to

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) = 0, \quad (10)$$

where we take $q = \zeta\Lambda$.

- It is evident that EOM (10) are satisfied if $\mathcal{F}(q) = -1$ and $\mathcal{F}'(q) = 0$.
- One such nonlocal operator $\mathcal{F}(\square)$ is

$$\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} \tilde{f}_n \left[\left(\frac{\square}{q} \right)^n + \left(\frac{q}{\square} \right)^n \right] = 1 - \frac{1}{2e} \left(\frac{\square}{q} e^{\frac{\square}{q}} + \frac{q}{\square} e^{\frac{q}{\square}} \right), \quad q \neq 0.$$

- ✳ Let us consider model (MS) in more details, so we

$$S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x, \quad (9)$$

where $\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$

- ✳ It is a → very special case since the EOM (8), for $\mathcal{G}(R) = \sqrt{R - 2\Lambda}$, is simplified to

$$(G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) = 0, \quad (10)$$

where we take $q = \zeta\Lambda$.

- ✳ It is evident that EOM (10) are satisfied if $\mathcal{F}(q) = -1$ and $\mathcal{F}'(q) = 0$.
- ✳ One such nonlocal operator $\mathcal{F}(\square)$ is

$$\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} \tilde{f}_n \left[\left(\frac{\square}{q} \right)^n + \left(\frac{q}{\square} \right)^n \right] = 1 - \frac{1}{2e} \left(\frac{\square}{q} e^{\frac{q}{\square}} + \frac{q}{\square} e^{\frac{q}{\square}} \right), \quad q \neq 0.$$

- ✳ Let us consider model (MS) in more details, so we

$$S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x, \quad (9)$$

where $\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$

- ✳ It is a very special case since the EOM (8), for $\mathcal{G}(R) = \sqrt{R - 2\Lambda}$, is simplified to

$$(G_{\mu\nu} + \Lambda g_{\mu\nu})(1 + \mathcal{F}(q)) + \frac{1}{2}\mathcal{F}'(q)S_{\mu\nu}(\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) = 0, \quad (10)$$

where we take $q = \zeta\Lambda$.

- ✳ It is evident that EOM (10) are satisfied if $\mathcal{F}(q) = -1$ and $\mathcal{F}'(q) = 0$.
- ✳ One such nonlocal operator $\mathcal{F}(\square)$ is

$$\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} \tilde{f}_n \left[\left(\frac{\square}{q} \right)^n + \left(\frac{q}{\square} \right)^n \right] = 1 - \frac{1}{2e} \left(\frac{\square}{q} e^{\frac{\square}{q}} + \frac{q}{\square} e^{\frac{q}{\square}} \right), \quad q \neq 0.$$

- ✳ Let us consider model (MS) in more details, so we

$$S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x, \quad (9)$$

where $\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$

- ✳ It is a ► very special case since the EOM (8), for $\mathcal{G}(R) = \sqrt{R - 2\Lambda}$, is simplified to

$$(G_{\mu\nu} + \Lambda g_{\mu\nu})(1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) = 0, \quad (10)$$

where we take $q = \zeta \Lambda$.

- ✳ It is evident that EOM (10) are satisfied if $\mathcal{F}(q) = -1$ and $\mathcal{F}'(q) = 0$.
- ✳ One such nonlocal operator $\mathcal{F}(\square)$ is

$$\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} \tilde{f}_n \left[\left(\frac{\square}{q} \right)^n + \left(\frac{q}{\square} \right)^n \right] = 1 - \frac{1}{2e} \left(\frac{\square}{q} e^{\frac{\square}{q}} + \frac{q}{\square} e^{\frac{q}{\square}} \right), \quad q \neq 0.$$

- ✳ Let us consider model (MS) in more details, so we

$$S = \frac{1}{16\pi G} \int_M (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \sqrt{-g} d^4x, \quad (9)$$

where $\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} f_n \square^n + \sum_{n=1}^{+\infty} f_{-n} \square^{-n}$

- ✳ It is a very special case since the EOM (8), for $\mathcal{G}(R) = \sqrt{R - 2\Lambda}$, is simplified to

$$(G_{\mu\nu} + \Lambda g_{\mu\nu})(1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) = 0, \quad (10)$$

where we take $q = \zeta \Lambda$.

- ✳ It is evident that EOM (10) are satisfied if $\mathcal{F}(q) = -1$ and $\mathcal{F}'(q) = 0$.
- ✳ One such nonlocal operator $\mathcal{F}(\square)$ is

$$\mathcal{F}(\square) = 1 + \sum_{n=1}^{+\infty} \tilde{f}_n \left[\left(\frac{\square}{q} \right)^n + \left(\frac{q}{\square} \right)^n \right] = 1 - \frac{1}{2e} \left(\frac{\square}{q} e^{\frac{\square}{q}} + \frac{q}{\square} e^{\frac{q}{\square}} \right), \quad q \neq 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^\alpha e^{i\beta t}$

There are two solutions:

$$a_1(t) = A t^{\frac{3}{2}} e^{i\sqrt{\frac{3}{8}}\Lambda t}, \quad \dot{a}_1 = \frac{3}{2} A t^{\frac{1}{2}} e^{i\sqrt{\frac{3}{8}}\Lambda t}, \quad \ddot{a}_1 = \frac{3}{4} A e^{i\sqrt{\frac{3}{8}}\Lambda t}.$$

$$a_2(t) = A t^{\frac{3}{2}} e^{-i\sqrt{\frac{3}{8}}\Lambda t}, \quad \dot{a}_2 = \frac{3}{2} A t^{\frac{1}{2}} e^{-i\sqrt{\frac{3}{8}}\Lambda t}, \quad \ddot{a}_2 = \frac{3}{4} A e^{-i\sqrt{\frac{3}{8}}\Lambda t}.$$

Both solutions are oscillating and they are not bounded. They are not physical solutions.

For $\alpha > 0$ we have the following two special solutions:

$$a_3(t) = A \cos^2 \left(\sqrt{\frac{3}{8}}\Lambda t \right), \quad \dot{a}_3 = \frac{3}{2} A \cos \left(\sqrt{\frac{3}{8}}\Lambda t \right), \quad \ddot{a}_3 = -\frac{9}{4} A \cos^2 \left(\sqrt{\frac{3}{8}}\Lambda t \right),$$

$$a_4(t) = A \sinh^2 \left(\sqrt{\frac{3}{8}}\Lambda t \right), \quad \dot{a}_4 = \frac{3}{2} A \sinh \left(\sqrt{\frac{3}{8}}\Lambda t \right), \quad \ddot{a}_4 = -\frac{9}{4} A \sinh^2 \left(\sqrt{\frac{3}{8}}\Lambda t \right).$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^q e^{\gamma t^2}$

⊗ There are two solutions:

$$a_1(t) = A t^{\frac{3}{7}} e^{\frac{4}{7}\Lambda t^2}, \quad \mathcal{F}\left(-\frac{3}{7}\Lambda\right) = -1, \quad \mathcal{F}'\left(-\frac{3}{7}\Lambda\right) = 0,$$

$$a_2(t) = A e^{\frac{4}{7}\Lambda t^2}, \quad \mathcal{F}(-\Lambda) = -1, \quad \mathcal{F}'(-\Lambda) = 0.$$

1.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$

⊗ In this case for $\alpha\beta \neq 0$, $R \neq 2\Lambda$ and $q \neq 0$ we have solutions if

$$\gamma = \frac{2}{3}, \quad q = \frac{3}{8}\Lambda, \quad \lambda = \pm\sqrt{\frac{3}{8}\Lambda}.$$

⊗ When $\alpha\beta \neq 0$, we have the following two special solutions:

$$a_3(t) = A \cosh^{\frac{3}{2}}\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_4(t) = A \sinh^{\frac{3}{2}}\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^n e^{\gamma t^2}$

⊗ There are two solutions:

$$a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}, \quad \mathcal{F}\left(-\frac{3}{7}\Lambda\right) = -1, \quad \mathcal{F}'\left(-\frac{3}{7}\Lambda\right) = 0,$$

$$a_2(t) = A e^{\frac{\Lambda}{6} t^2}, \quad \mathcal{F}(-\Lambda) = -1, \quad \mathcal{F}'(-\Lambda) = 0.$$

1.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$

⊗ In this case for $\alpha\beta \neq 0$, $R \neq 2\Lambda$ and $q \neq 0$ we have solutions if

$$\gamma = \frac{2}{3}, \quad q = \frac{3}{8}\Lambda, \quad \lambda = \pm\sqrt{\frac{3}{8}\Lambda}.$$

⊗ When $\alpha\beta \neq 0$, we have the following two special solutions:

$$a_3(t) = A \cosh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_4(t) = A \sinh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^n e^{\gamma t^2}$

⊗ There are two solutions:

$$a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}, \quad \mathcal{F}\left(-\frac{3}{7}\Lambda\right) = -1, \quad \mathcal{F}'\left(-\frac{3}{7}\Lambda\right) = 0,$$

$$a_2(t) = A e^{\frac{\Lambda}{6} t^2}, \quad \mathcal{F}(-\Lambda) = -1, \quad \mathcal{F}'(-\Lambda) = 0.$$

1.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$

⊗ In this case for $\alpha\beta \neq 0$, $R \neq 2\Lambda$ and $q \neq 0$ we have solutions if

$$\gamma = \frac{2}{3}, \quad q = \frac{3}{8}\Lambda, \quad \lambda = \pm\sqrt{\frac{3}{8}\Lambda}.$$

⊗ When $\alpha\beta \neq 0$, we have the following two special solutions:

$$a_3(t) = A \cosh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_4(t) = A \sinh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^n e^{\gamma t^2}$

⊗ There are two solutions:

$$a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}, \quad \mathcal{F}\left(-\frac{3}{7}\Lambda\right) = -1, \quad \mathcal{F}'\left(-\frac{3}{7}\Lambda\right) = 0,$$

$$a_2(t) = A e^{\frac{\Lambda}{6} t^2}, \quad \mathcal{F}(-\Lambda) = -1, \quad \mathcal{F}'(-\Lambda) = 0.$$

1.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$

⊗ In this case for $\alpha\beta \neq 0$, $R \neq 2\Lambda$ and $q \neq 0$ we have solutions if

$$\gamma = \frac{2}{3}, \quad q = \frac{3}{8}\Lambda, \quad \lambda = \pm\sqrt{\frac{3}{8}\Lambda}.$$

⊗ When $\alpha\beta \neq 0$, we have the following two special solutions:

$$a_3(t) = A \cosh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_4(t) = A \sinh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^n e^{\gamma t^2}$

⊗ There are two solutions:

$$a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}, \quad \mathcal{F}\left(-\frac{3}{7}\Lambda\right) = -1, \quad \mathcal{F}'\left(-\frac{3}{7}\Lambda\right) = 0,$$

$$a_2(t) = A e^{\frac{\Lambda}{6} t^2}, \quad \mathcal{F}(-\Lambda) = -1, \quad \mathcal{F}'(-\Lambda) = 0.$$

1.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$

⊗ In this case for $\alpha\beta \neq 0$, $R \neq 2\Lambda$ and $q \neq 0$ we have solutions if

$$\gamma = \frac{2}{3}, \quad q = \frac{3}{8}\Lambda, \quad \lambda = \pm \sqrt{\frac{3}{8}\Lambda}.$$

⊗ When $\alpha\beta \neq 0$, we have the following two special solutions:

$$a_3(t) = A \cosh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_4(t) = A \sinh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^n e^{\gamma t^2}$

⊗ There are two solutions:

$$a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}, \quad \mathcal{F}\left(-\frac{3}{7}\Lambda\right) = -1, \quad \mathcal{F}'\left(-\frac{3}{7}\Lambda\right) = 0,$$

$$a_2(t) = A e^{\frac{\Lambda}{6} t^2}, \quad \mathcal{F}(-\Lambda) = -1, \quad \mathcal{F}'(-\Lambda) = 0.$$

1.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$

⊗ In this case for $\alpha\beta \neq 0$, $R \neq 2\Lambda$ and $q \neq 0$ we have solutions if

$$\gamma = \frac{2}{3}, \quad q = \frac{3}{8}\Lambda, \quad \lambda = \pm\sqrt{\frac{3}{8}\Lambda}.$$

⊗ When $\alpha\beta \neq 0$, we have the following two special solutions:

$$a_3(t) = A \cosh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_4(t) = A \sinh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. Solutions of the form $a(t) = A t^n e^{\gamma t^2}$

✳ There are two solutions:

$$a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}, \quad \mathcal{F}\left(-\frac{3}{7}\Lambda\right) = -1, \quad \mathcal{F}'\left(-\frac{3}{7}\Lambda\right) = 0,$$

$$a_2(t) = A e^{\frac{\Lambda}{6} t^2}, \quad \mathcal{F}(-\Lambda) = -1, \quad \mathcal{F}'(-\Lambda) = 0.$$

1.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$

✳ In this case for $\alpha\beta \neq 0$, $R \neq 2\Lambda$ and $q \neq 0$ we have solutions if

$$\gamma = \frac{2}{3}, \quad q = \frac{3}{8}\Lambda, \quad \lambda = \pm\sqrt{\frac{3}{8}\Lambda}.$$

✳ When $\alpha\beta \neq 0$, we have the following two special solutions:

$$a_3(t) = A \cosh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_4(t) = A \sinh\left(\sqrt{\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.1. New solutions of the form $a(t) = A \sin(\sqrt{-\frac{\Lambda}{3}}\alpha t)$ or $a(t) = A \cos(\sqrt{-\frac{\Lambda}{3}}\alpha t)$

For $\alpha = 0$ and $\Lambda < 0$ we have only one family of solutions. Taking $\alpha = 0$ and $\Lambda < 0$ we have the following two solutions:

$$a(t) = A \sin\left(\sqrt{-\frac{\Lambda}{3}}\alpha t\right), \quad \mathcal{F}\left(\frac{\partial}{\partial t} A\right) = -1, \quad \mathcal{F}'\left(\frac{\partial}{\partial t} A\right) = 0,$$

$$a_0(t) = A \cos\left(\sqrt{-\frac{\Lambda}{3}}\alpha t\right), \quad \mathcal{F}\left(\frac{\partial}{\partial t} A\right) = -1, \quad \mathcal{F}'\left(\frac{\partial}{\partial t} A\right) = 0.$$

For $\alpha = 0$ or $\Lambda = 0$ we have also the cosmological solutions with $\gamma = \frac{2}{3}$:

$$a_1(t) = A \sin^2\left(\sqrt{-\frac{\Lambda}{3}}\alpha t\right), \quad \mathcal{F}\left(\frac{\partial}{\partial t} A\right) = -1, \quad \mathcal{F}'\left(\frac{\partial}{\partial t} A\right) = 0,$$

$$a_0(t) = A \cos^2\left(\sqrt{-\frac{\Lambda}{3}}\alpha t\right), \quad \mathcal{F}\left(\frac{\partial}{\partial t} A\right) = -1, \quad \mathcal{F}'\left(\frac{\partial}{\partial t} A\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.3. New solutions of the form $a(t) = (\alpha \sin \lambda t + \beta \cos \lambda t)^\gamma$

⊗ For $\alpha \neq 0$ and $\beta \neq 0$ there are only possibility for $\gamma, \gamma = \frac{2}{3}$. Taking $\beta = \pm \alpha$, and $A = \alpha^{\frac{2}{3}}$, we have the following two solutions:

$$a_3(t) = A \left(1 + \sin \left(2 \sqrt{-\frac{3}{8}\Lambda} t \right) \right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_6(t) = A \left(1 - \sin \left(2 \sqrt{-\frac{3}{8}\Lambda} t \right) \right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

⊗ For $\alpha = 0$ or $\beta = 0$, we have also two cosmological solutions with $\gamma = \frac{2}{3}$:

$$a_7(t) = A \sin^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t \right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_8(t) = A \cos^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t \right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.3. New solutions of the form $a(t) = (\alpha \sin \lambda t + \beta \cos \lambda t)^\gamma$

⊗ For $\alpha \neq 0$ and $\beta \neq 0$ there are only possibility for $\gamma, \gamma = \frac{2}{3}$. Taking $\beta = \pm \alpha$, and $A = \alpha^{\frac{2}{3}}$, we have the following two solutions:

$$a_5(t) = A \left(1 + \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t\right)\right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_6(t) = A \left(1 - \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t\right)\right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

⊗ For $\alpha = 0$ or $\beta = 0$, we have also two cosmological solutions with $\gamma = \frac{2}{3}$:

$$a_7(t) = A \sin^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_8(t) = A \cos^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.3. New solutions of the form $a(t) = (\alpha \sin \lambda t + \beta \cos \lambda t)^\gamma$

⊗ For $\alpha \neq 0$ and $\beta \neq 0$ there are only possibility for $\gamma, \gamma = \frac{2}{3}$. Taking $\beta = \pm \alpha$, and $A = \alpha^{\frac{2}{3}}$, we have the following two solutions:

$$a_5(t) = A \left(1 + \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t\right)\right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_6(t) = A \left(1 - \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t\right)\right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

⊗ For $\alpha = 0$ or $\beta = 0$, we have also two cosmological solutions with $\gamma = \frac{2}{3}$:

$$a_7(t) = A \sin^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_8(t) = A \cos^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t\right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.3. New solutions of the form $a(t) = (\alpha \sin \lambda t + \beta \cos \lambda t)^\gamma$

⊗ For $\alpha \neq 0$ and $\beta \neq 0$ there are only possibility for $\gamma, \gamma = \frac{2}{3}$. Taking $\beta = \pm\alpha$, and $A = \alpha^{\frac{2}{3}}$, we have the following two solutions:

$$a_5(t) = A \left(1 + \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t \right) \right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_6(t) = A \left(1 - \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t \right) \right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

⊗ For $\alpha = 0$ or $\beta = 0$, we have also two cosmological solutions with $\gamma = \frac{2}{3}$:

$$a_7(t) = A \sin^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t \right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_8(t) = A \cos^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t \right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

1. Cosmological solution in the flat Universe ($k = 0$)

1.3. New solutions of the form $a(t) = (\alpha \sin \lambda t + \beta \cos \lambda t)^\gamma$

- For $\alpha \neq 0$ and $\beta \neq 0$ there are only possibility for $\gamma, \gamma = \frac{2}{3}$. Taking $\beta = \pm\alpha$, and $A = \alpha^{\frac{2}{3}}$, we have the following two solutions:

$$a_5(t) = A \left(1 + \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t \right) \right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_6(t) = A \left(1 - \sin \left(2\sqrt{-\frac{3}{8}\Lambda} t \right) \right)^{\frac{1}{3}}, \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

- For $\alpha = 0$ or $\beta = 0$, we have also two cosmological solutions with $\gamma = \frac{2}{3}$:

$$a_7(t) = A \sin^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t \right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0,$$

$$a_8(t) = A \cos^{\frac{2}{3}} \left(\sqrt{-\frac{3}{8}\Lambda} t \right), \quad \mathcal{F}\left(\frac{3}{8}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{3}{8}\Lambda\right) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \mp 1$)

2.1. Solutions of the form $a(t) = A \sin(\sqrt{\frac{2}{3}}\Lambda t)$ ($k = \mp 1$)

For $k = \mp 1$ the function $\mathcal{F}(t)$ satisfies the following equation:

$$\mathcal{F}(t) = \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) = 0.$$

$$\mathcal{F}(t) = \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) = 0.$$

$$\mathcal{F}(t) = \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) = 0.$$

$$\mathcal{F}(t) = \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) = 0.$$

$$\mathcal{F}(t) = \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) = 0.$$

$$\mathcal{F}(t) = \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) - \frac{1}{2} \sin^2(\sqrt{\frac{2}{3}}\Lambda t) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \mp 1$)

2.1. Solutions of the form $a(t) = A e^{\pm \sqrt{\frac{\Lambda}{3}}t}$, ($k = \pm 1$)

• For $\alpha \neq 0, \beta = 0$ or $\alpha = 0, \beta \neq 0$ we have the following solution:

$$a_0(t) = A e^{\pm \sqrt{\frac{\Lambda}{3}}t}, \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0, \quad \Lambda > 0.$$

2.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})\gamma$, ($k = \pm 1$)

• For $\alpha \neq 0, \beta \neq 0, \Lambda \neq 2\Lambda, q \neq 0$ there are two following cosmological solutions:

$$a_{10}(t) = A \cosh\left(\sqrt{\frac{2}{3}\Lambda} t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0,$$

$$a_{11}(t) = A \sinh\left(\sqrt{\frac{2}{3}\Lambda} t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \pm 1$)

2.1. Solutions of the form $a(t) = A e^{\pm \sqrt{\frac{\Lambda}{6}}t}$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta = 0$ or $\alpha = 0, \beta \neq 0$ we have the following solution:

$$a_9(t) = A e^{\pm \sqrt{\frac{\Lambda}{6}}t}, \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0, \quad \Lambda > 0.$$

2.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})\gamma$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta \neq 0, \Lambda \neq 2\Lambda, q \neq 0$ there are two following cosmological solutions:

$$a_{10}(t) = A \cosh\left(\sqrt{\frac{2}{3}\Lambda} t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0,$$

$$a_{11}(t) = A \sinh\left(\sqrt{\frac{2}{3}\Lambda} t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \pm 1$)

2.1. Solutions of the form $a(t) = A e^{\pm \sqrt{\frac{\Lambda}{6}}t}$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta = 0$ or $\alpha = 0, \beta \neq 0$ we have the following solution:

$$a_9(t) = A e^{\pm \sqrt{\frac{\Lambda}{6}}t}, \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0, \quad \Lambda > 0.$$

2.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})\gamma$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta \neq 0, \Lambda \neq 2\Lambda, q \neq 0$ there are two following cosmological solutions:

$$a_{10}(t) = A \cosh\left(\sqrt{\frac{2}{3}\Lambda} t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0,$$

$$a_{11}(t) = A \sinh\left(\sqrt{\frac{2}{3}\Lambda} t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \pm 1$)

2.1. Solutions of the form $a(t) = A e^{\pm \sqrt{\frac{\Lambda}{6}}t}$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta = 0$ or $\alpha = 0, \beta \neq 0$ we have the following solution:

$$a_9(t) = A e^{\pm \sqrt{\frac{\Lambda}{6}}t}, \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0, \quad \Lambda > 0.$$

2.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^{\gamma}$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta \neq 0, \Lambda \neq 2\Lambda, q \neq 0$ there are two following cosmological solutions:

$$a_{10}(t) = A \cosh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0,$$

$$a_{11}(t) = A \sinh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \pm 1$)

2.1. Solutions of the form $a(t) = A e^{\pm\sqrt{\frac{\Lambda}{6}}t}$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta = 0$ or $\alpha = 0, \beta \neq 0$ we have the following solution:

$$a_9(t) = A e^{\pm\sqrt{\frac{\Lambda}{6}}t}, \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0, \quad \Lambda > 0.$$

2.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta \neq 0, R \neq 2\Lambda, q \neq 0$ there are two following cosmological solutions:

$$a_{10}(t) = A \cosh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0,$$

$$a_{11}(t) = A \sinh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \pm 1$)

2.1. Solutions of the form $a(t) = A e^{\pm\sqrt{\frac{\Lambda}{6}}t}$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta = 0$ or $\alpha = 0, \beta \neq 0$ we have the following solution:

$$a_9(t) = A e^{\pm\sqrt{\frac{\Lambda}{6}}t}, \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0, \quad \Lambda > 0.$$

2.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta \neq 0, R \neq 2\Lambda, q \neq 0$ there are two following cosmological solutions:

$$a_{10}(t) = A \cosh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0,$$

$$a_{11}(t) = A \sinh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0.$$

2. Cosmological solution in the open and closed Universe ($k = \pm 1$)

2.1. Solutions of the form $a(t) = A e^{\pm\sqrt{\frac{\Lambda}{6}}t}$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta = 0$ or $\alpha = 0, \beta \neq 0$ we have the following solution:

$$a_9(t) = A e^{\pm\sqrt{\frac{\Lambda}{6}}t}, \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0, \quad \Lambda > 0.$$

2.2. New solutions of the form $a(t) = (\alpha e^{\lambda t} + \beta e^{-\lambda t})^\gamma$, ($k = \pm 1$)

⊗ For $\alpha \neq 0, \beta \neq 0, R \neq 2\Lambda, q \neq 0$ there are two following cosmological solutions:

$$a_{10}(t) = A \cosh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0,$$

$$a_{11}(t) = A \sinh^{\frac{1}{2}}\left(\sqrt{\frac{2}{3}}\Lambda t\right), \quad k = \pm 1, \quad \mathcal{F}\left(\frac{1}{3}\Lambda\right) = -1, \quad \mathcal{F}'\left(\frac{1}{3}\Lambda\right) = 0.$$

- ④ 1. Cosmological solution for $a_1(t) = At^{\frac{2}{3}} e^{\Lambda t^2}$, $k = 0$
- ④ The corresponding ~~variables~~, acceleration and the scalar curvature are:

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

$$\ddot{a}_1(t) = \left(-\frac{2}{9} \frac{1}{t^2} + \frac{1}{3} \Lambda + \frac{1}{49} \Lambda^2 t^2 \right) a_1(t),$$

$$R_1(t) = \frac{4}{3} \frac{1}{t^2} + \frac{22}{7} \Lambda + \frac{12}{49} \Lambda^2 t^2,$$

- ④ Friedman equations gives

$$\bar{\rho}(t) = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad \bar{p}(t) = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right), \quad (11)$$

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure of the dark side of the universe, respectively. The corresponding equation of state is $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$.

- ④ 1. Cosmological solution for $a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ④ The corresponding Hubble parameter, acceleration and the scalar curvature are:

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

$$\ddot{a}_1(t) = \left(-\frac{2}{9} \frac{1}{t^2} + \frac{1}{3} \Lambda + \frac{1}{49} \Lambda^2 t^2 \right) a_1(t),$$

$$R_1(t) = \frac{4}{3} \frac{1}{t^2} + \frac{22}{7} \Lambda + \frac{12}{49} \Lambda^2 t^2,$$

- ④ Friedman equations gives

$$\bar{\rho}(t) = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad \bar{p}(t) = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right), \quad (11)$$

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure of the dark side of the universe, respectively. The corresponding equation of state is $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$.

- ④ 1. Cosmological solution for $a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ④ The corresponding Hubble parameter, acceleration and the scalar curvature are:

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

$$\ddot{a}_1(t) = \left(-\frac{2}{9} \frac{1}{t^2} + \frac{1}{3} \Lambda + \frac{1}{49} \Lambda^2 t^2 \right) a_1(t),$$

$$R_1(t) = \frac{4}{3} \frac{1}{t^2} + \frac{22}{7} \Lambda + \frac{12}{49} \Lambda^2 t^2,$$

- ④ Friedman equations gives

$$\bar{\rho}(t) = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad \bar{p}(t) = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right), \quad (11)$$

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure of the dark side of the universe, respectively. The corresponding equation of state is $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$.

- ④ 1. Cosmological solution for $a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ④ The corresponding Hubble parameter, acceleration and the scalar curvature are:

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

$$\ddot{a}_1(t) = \left(-\frac{2}{9} \frac{1}{t^2} + \frac{1}{3} \Lambda + \frac{1}{49} \Lambda^2 t^2 \right) a_1(t),$$

$$R_1(t) = \frac{4}{3} \frac{1}{t^2} + \frac{22}{7} \Lambda + \frac{12}{49} \Lambda^2 t^2,$$

- ④ Friedman equations gives

$$\bar{\rho}(t) = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad \bar{p}(t) = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right), \quad (11)$$

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure of the dark side of the universe, respectively. The corresponding equation of state is $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$.

- ④ 1. Cosmological solution for $a_1(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ④ The corresponding Hubble parameter, acceleration and the scalar curvature are:

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

$$\ddot{a}_1(t) = \left(-\frac{2}{9} \frac{1}{t^2} + \frac{1}{3} \Lambda + \frac{1}{49} \Lambda^2 t^2 \right) a_1(t),$$

$$R_1(t) = \frac{4}{3} \frac{1}{t^2} + \frac{22}{7} \Lambda + \frac{12}{49} \Lambda^2 t^2,$$

- ④ Friedman equations gives

$$\bar{\rho}(t) = \frac{2t^{-2} + \frac{9}{98} \Lambda^2 t^2 - \frac{9}{14} \Lambda}{12\pi G}, \quad \bar{p}(t) = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7} \Lambda t^2 - 1 \right), \quad (11)$$

where $\bar{\rho}$ and \bar{p} are analogs of the energy density and pressure of the dark side of the universe, respectively. The corresponding equation of state is $\bar{p}(t) = \bar{w}(t) \bar{\rho}(t)$.

- ④ (11) implies that $\bar{w}(t) \rightarrow -1$ when $t \rightarrow \infty$, what corresponds to an analog of Λ dark energy dominance in the standard cosmological model.
- ④ It means that this nonlocal gravity model with cosmological solution $a(t) = At^{\frac{2}{3}} e^{\frac{\Lambda}{6}t^2}$ describes some effects usually attributed to the dark matter and dark energy.
- ④ This solution is invariant under transformation $t \rightarrow -t$ and singular at cosmic time $t = 0$.
- ④ Let us recall, the second Friedman equation

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}, \quad (12)$$

where ρ is energy density in the standard model of cosmology.

- ✳ The expressions (11) implies that $\bar{w}(t) \rightarrow -1$ when $t \rightarrow \infty$, what corresponds to an analog of Λ dark energy dominance in the standard cosmological model.
- ✳ It means that this nonlocal gravity model with cosmological solution $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$ describes some effects usually attributed to the dark matter and dark energy.
- ✳ This solution is invariant under transformation $t \rightarrow -t$ and singular at cosmic time $t = 0$.
- ✳ Let us recall, the second Friedman equation

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}, \quad (12)$$

where ρ is energy density in the standard model of cosmology.

- ✳ The expressions (11) implies that $\bar{w}(t) \rightarrow -1$ when $t \rightarrow \infty$, what corresponds to an analog of Λ dark energy dominance in the standard cosmological model.
- ✳ It means that this nonlocal gravity model with cosmological solution $a(t) = At^{\frac{2}{3}} e^{\frac{\Lambda}{14}t^2}$ describes some effects usually attributed to the dark matter and dark energy.
- ✳ This solution is invariant under transformation $t \rightarrow -t$ and singular at cosmic time $t = 0$.
- ✳ Let us recall, the second Friedman equation

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}, \quad (12)$$

where ρ is energy density in the standard model of cosmology.

- ✳ The expressions (11) implies that $\bar{w}(t) \rightarrow -1$ when $t \rightarrow \infty$, what corresponds to an analog of Λ dark energy dominance in the standard cosmological model.
- ✳ It means that this nonlocal gravity model with cosmological solution $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$ describes some effects usually attributed to the dark matter and dark energy.
- ✳ This solution is invariant under transformation $t \rightarrow -t$ and singular at cosmic time $t = 0$.
- ✳ Let us recall, the second Friedman equation

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}, \quad (12)$$

where ρ is energy density in the standard model of cosmology.

- ✳ The expressions (11) implies that $\bar{w}(t) \rightarrow -1$ when $t \rightarrow \infty$, what corresponds to an analog of Λ dark energy dominance in the standard cosmological model.
- ✳ It means that this nonlocal gravity model with cosmological solution $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$ describes some effects usually attributed to the dark matter and dark energy.
- ✳ This solution is invariant under transformation $t \rightarrow -t$ and singular at cosmic time $t = 0$.
- ✳ Let us recall, the second Friedman equation

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}, \quad (12)$$

where ρ is energy density in the standard model of cosmology.

- ✳ The expressions (11) implies that $\bar{w}(t) \rightarrow -1$ when $t \rightarrow \infty$, what corresponds to an analog of Λ dark energy dominance in the standard cosmological model.
- ✳ It means that this nonlocal gravity model with cosmological solution $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$ describes some effects usually attributed to the dark matter and dark energy.
- ✳ This solution is invariant under transformation $t \rightarrow -t$ and singular at cosmic time $t = 0$.
- ✳ Let us recall, the second Friedman equation

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}, \quad (12)$$

where ρ is energy density in the standard model of cosmology.

④ Then we can rewrite the previous equation as,

$$\begin{aligned} H^2 &= \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho_r + \frac{8\pi G}{3}\rho_m - \frac{k}{a^2} + \frac{\Lambda}{3} \\ &= \frac{8C_r\pi G}{a^4} + \frac{8C_m\pi G}{a^3} - \frac{k}{a^2} + \frac{\Lambda}{3} \end{aligned}$$

⑤

$$\frac{H^2}{H_0^2} = \frac{\Omega_r}{a^3} + \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \Omega_\Lambda$$

⑥ Observational data obtained by Planck-2018 for the Λ CDM model:

$t_0 = (13.801 \pm 0.024) \times 10^9$ yr – age of the universe,

$H(t_0) = (67.40 \pm 0.50)$ km/s/Mpc – Hubble parameter,

$\Omega_m = 0.315 \pm 0.007$ – matter density parameter,

$\Omega_\Lambda = 0.685$ – Λ density parameter,

$w_0 = -1.03 \pm 0.03$ – ratio of pressure to energy density.

✳ Then we can rewrite the previous equation as,

$$\begin{aligned} H^2 &= \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho_r + \frac{8\pi G}{3}\rho_m - \frac{k}{a^2} + \frac{\Lambda}{3} \\ &= \frac{8C_r\pi G}{a^4} + \frac{8C_m\pi G}{a^3} - \frac{k}{a^2} + \frac{\Lambda}{3} \end{aligned}$$

✳ It follows

$$\frac{H^2}{H_0^2} = \frac{\Omega_r}{a^4} + \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \Omega_\Lambda$$

✳ Observational data obtained by Planck-2018 for the Λ CDM model:

$$t_0 = (13.801 \pm 0.024) \times 10^9 \text{ yr} - \text{age of the universe},$$

$$H(t_0) = (67.40 \pm 0.50) \text{ km/s/Mpc} - \text{Hubble parameter},$$

$$\Omega_m = 0.315 \pm 0.007 - \text{matter density parameter},$$

$$\Omega_\Lambda = 0.685 - \Lambda \text{ density parameter},$$

$$w_0 = -1.03 \pm 0.03 - \text{ratio of pressure to energy density}.$$

- ✳ Then we can rewrite the previous equation as,

$$\begin{aligned}
 H^2 &= \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho_r + \frac{8\pi G}{3}\rho_m - \frac{k}{a^2} + \frac{\Lambda}{3} \\
 &= \frac{8C_r\pi G}{a^4} + \frac{8C_m\pi G}{a^3} - \frac{k}{a^2} + \frac{\Lambda}{3}
 \end{aligned}$$

✳ It follows

$$\frac{H^2}{H_0^2} = \frac{\Omega_r}{a^4} + \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \Omega_\Lambda$$

- ✳ Observational data obtained by Planck-2018 for the Λ CDM model:

$t_0 = (13.801 \pm 0.024) \times 10^9$ yr – age of the universe,

$H(t_0) = (67.40 \pm 0.50)$ km/s/Mpc – Hubble parameter,

$\Omega_m = 0.315 \pm 0.007$ – matter density parameter,

$\Omega_\Lambda = 0.685$ – Λ density parameter,

$w_0 = -1.03 \pm 0.03$ – ratio of pressure to energy density.

- Then we can rewrite the previous equation as,

$$\begin{aligned}
 H^2 &= \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho_r + \frac{8\pi G}{3}\rho_m - \frac{k}{a^2} + \frac{\Lambda}{3} \\
 &= \frac{8C_r\pi G}{a^4} + \frac{8C_m\pi G}{a^3} - \frac{k}{a^2} + \frac{\Lambda}{3}
 \end{aligned}$$

- It follows

$$\frac{H^2}{H_0^2} = \frac{\Omega_r}{a^4} + \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \Omega_\Lambda$$

- Observational data obtained by Planck-2018 for the Λ CDM model:

$t_0 = (13.801 \pm 0.024) \times 10^9$ yr – age of the universe,

$H(t_0) = (67.40 \pm 0.50)$ km/s/Mpc – Hubble parameter,

$\Omega_m = 0.315 \pm 0.007$ – matter density parameter,

$\Omega_\Lambda = 0.685$ – Λ density parameter,

$w_0 = -1.03 \pm 0.03$ – ratio of pressure to energy density.

- Then we can rewrite the previous equation as,

$$\begin{aligned} H^2 &= \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho_r + \frac{8\pi G}{3}\rho_m - \frac{k}{a^2} + \frac{\Lambda}{3} \\ &= \frac{8C_r\pi G}{a^4} + \frac{8C_m\pi G}{a^3} - \frac{k}{a^2} + \frac{\Lambda}{3} \end{aligned}$$

- It follows

$$\frac{H^2}{H_0^2} = \frac{\Omega_r}{a^4} + \frac{\Omega_m}{a^3} + \frac{\Omega_k}{a^2} + \Omega_\Lambda$$

- Observational data obtained by Planck-2018 for the Λ CDM model:

$$t_0 = (13.801 \pm 0.024) \times 10^9 \text{ yr} - \text{age of the universe},$$

$$H(t_0) = (67.40 \pm 0.50) \text{ km/s/Mpc} - \text{Hubble parameter},$$

$$\Omega_m = 0.315 \pm 0.007 - \text{matter density parameter},$$

$$\Omega_\Lambda = 0.685 - \Lambda \text{ density parameter},$$

$$w_0 = -1.03 \pm 0.03 - \text{ratio of pressure to energy density}.$$

④ From,

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

taking $H_1(t_0) = H(t_0)$ we calculate $\Lambda_1 = 1.05 \times 10^{-35} \text{ s}^{-2}$ that differs from $\Lambda = 3H^2(t_0)$ $\Omega_\Lambda = 0.98 \times 10^{-35} \text{ s}^{-2}$ (by Λ CDM model).

④ We also computed

$$\ddot{a}_1(t_0)/a_1(t_0) = 2.7 \times 10^{-36} \text{ s}^{-2}$$

$$R(t_0) = 4.5 \times 10^{-35} \text{ s}^{-2} \quad \text{and consequently}$$

$$R(t_0) - 2\Lambda = 2.4 \times 10^{-35} \text{ s}^{-2}.$$

④ Replacing solution $a_1(t)$ with $k = 0$, Friedman equations give

$$\bar{p}_1(t) = \frac{3}{8\pi G} \left(H_1^2(t) - \frac{\Lambda_1}{3} \right) = \frac{3}{8\pi G} \left(\frac{4}{9} t^{-2} - \frac{1}{7} \Lambda_1 + \frac{1}{49} \Lambda_1^2 t^2 \right),$$

$$\bar{p}_1(t) = \frac{\Lambda_1}{56\pi G} \left(1 - \frac{3}{7} \Lambda_1 t^2 \right).$$

- From,

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

taking $H_1(t_0) = H(t_0)$ we calculate $\Lambda_1 = 1.05 \times 10^{-35} \text{ s}^{-2}$ that differs from $\Lambda = 3H^2(t_0)$ $\Omega_\Lambda = 0.98 \times 10^{-35} \text{ s}^{-2}$ (by Λ CDM model).

- We also computed

$$\ddot{a}_1(t_0)/a_1(t_0) = 2.7 \times 10^{-36} \text{ s}^{-2}$$

$$R(t_0) = 4.5 \times 10^{-35} \text{ s}^{-2} \quad \text{and consequently}$$

$$R(t_0) - 2\Lambda = 2.4 \times 10^{-35} \text{ s}^{-2}.$$

- Replacing solution $a_1(t)$ with $k = 0$, Friedman equations give

$$\bar{\rho}_1(t) = \frac{3}{8\pi G} \left(H_1^2(t) - \frac{\Lambda_1}{3} \right) = \frac{3}{8\pi G} \left(\frac{4}{9} t^{-2} - \frac{1}{7} \Lambda_1 + \frac{1}{49} \Lambda_1^2 t^2 \right),$$

$$\bar{p}_1(t) = \frac{\Lambda_1}{56\pi G} \left(1 - \frac{3}{7} \Lambda_1 t^2 \right).$$

✳ From,

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

taking $H_1(t_0) = H(t_0)$ we calculate $\Lambda_1 = 1.05 \times 10^{-35} \text{ s}^{-2}$ that differs from $\Lambda = 3H^2(t_0)$ $\Omega_\Lambda = 0.98 \times 10^{-35} \text{ s}^{-2}$ (by ΛCDM model).

✳ We also computed

$$\ddot{a}_1(t_0)/a_1(t_0) = 2.7 \times 10^{-36} \text{ s}^{-2}$$

$$R(t_0) = 4.5 \times 10^{-35} \text{ s}^{-2} \quad \text{and consequently}$$

$$R(t_0) - 2\Lambda = 2.4 \times 10^{-35} \text{ s}^{-2}.$$

✳ Replacing solution $a_1(t)$ with $k = 0$, Friedman equations give

$$\bar{\rho}_1(t) = \frac{3}{8\pi G} \left(H_1^2(t) - \frac{\Lambda_1}{3} \right) = \frac{3}{8\pi G} \left(\frac{4}{9} t^{-2} - \frac{1}{7} \Lambda_1 + \frac{1}{49} \Lambda_1^2 t^2 \right),$$

$$\bar{p}_1(t) = \frac{\Lambda_1}{56\pi G} \left(1 - \frac{3}{7} \Lambda_1 t^2 \right).$$

- ✳ From,

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

taking $H_1(t_0) = H(t_0)$ we calculate $\Lambda_1 = 1.05 \times 10^{-35} \text{ s}^{-2}$ that differs from $\Lambda = 3H^2(t_0)$ $\Omega_\Lambda = 0.98 \times 10^{-35} \text{ s}^{-2}$ (by ΛCDM model).

- ✳ We also computed

$$\ddot{a}_1(t_0)/a_1(t_0) = 2.7 \times 10^{-36} \text{ s}^{-2}$$

$$R(t_0) = 4.5 \times 10^{-35} \text{ s}^{-2} \quad \text{and consequently}$$

$$R(t_0) - 2\Lambda = 2.4 \times 10^{-35} \text{ s}^{-2}.$$

- ✳ Replacing solution $a_1(t)$ with $k = 0$, Friedman equations give

$$\bar{\rho}_1(t) = \frac{3}{8\pi G} \left(H_1^2(t) - \frac{\Lambda_1}{3} \right) = \frac{3}{8\pi G} \left(\frac{4}{9} t^{-2} - \frac{1}{7} \Lambda_1 + \frac{1}{49} \Lambda_1^2 t^2 \right),$$

$$\bar{p}_1(t) = \frac{\Lambda_1}{56\pi G} \left(1 - \frac{3}{7} \Lambda_1 t^2 \right).$$

- ✳ From,

$$H_1(t) = \frac{\dot{a}_1}{a_1} = \frac{2}{3} \frac{1}{t} + \frac{1}{7} \Lambda t,$$

taking $H_1(t_0) = H(t_0)$ we calculate $\Lambda_1 = 1.05 \times 10^{-35} \text{ s}^{-2}$ that differs from $\Lambda = 3H^2(t_0)$ $\Omega_\Lambda = 0.98 \times 10^{-35} \text{ s}^{-2}$ (by ΛCDM model).

- ✳ We also computed

$$\ddot{a}_1(t_0)/a_1(t_0) = 2.7 \times 10^{-36} \text{ s}^{-2}$$

$$R(t_0) = 4.5 \times 10^{-35} \text{ s}^{-2} \quad \text{and consequently}$$

$$R(t_0) - 2\Lambda = 2.4 \times 10^{-35} \text{ s}^{-2}.$$

- ✳ Replacing solution $a_1(t)$ with $k = 0$, Friedman equations give

$$\bar{p}_1(t) = \frac{3}{8\pi G} \left(H_1^2(t) - \frac{\Lambda_1}{3} \right) = \frac{3}{8\pi G} \left(\frac{4}{9} t^{-2} - \frac{1}{7} \Lambda_1 + \frac{1}{49} \Lambda_1^2 t^2 \right),$$

$$\bar{p}_1(t) = \frac{\Lambda_1}{56\pi G} \left(1 - \frac{3}{7} \Lambda_1 t^2 \right).$$

④ For $t = t_0$, from previous formula, and from Λ CDM model we have

$$\bar{\rho}_1(t_0) = 2.26 \times 10^{-30} \frac{g}{cm^3},$$

$$\rho(t_0) = \frac{3}{8\pi G} \left(H_0^2 - \frac{\Lambda}{3} \right) = 2.68 \times 10^{-30} \frac{g}{cm^3}.$$

④ Then, for vacuum energy density of background solution $a_1(t)$ and Λ CDM model, we have

$$\rho(t_0) - \bar{\rho}_1(t_0) = \frac{\Lambda_1 - \Lambda}{8\pi G} = \rho_{\Lambda_1} - \rho_{\Lambda} = 0.42 \times 10^{-30} \frac{g}{cm^3},$$

④ Critical energy density: $\rho_c = \frac{3H_0^2}{8\pi G} = 8.51 \times 10^{-30} \frac{g}{cm^3}$

④ and consequently,

$$\Omega_{\Lambda_1} = \frac{\rho_{\Lambda_1}}{\rho_c} = 0.734, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c} = 0.685, \quad \Delta\Omega_{\Lambda} = \Omega_{\Lambda_1} - \Omega_{\Lambda} = 0.049, \quad (13)$$

$$\Omega_{m_1} = \frac{\bar{\rho}_1(t_0)}{\rho_c} = 0.266, \quad \Omega_m = \frac{\rho(t_0)}{\rho_c} = 0.315, \quad \Delta\Omega_m = \Omega_m - \Omega_{m_1} = 0.049. \quad (14)$$

- For $t = t_0$, from previous formula, and from Λ CDM model we have

$$\bar{\rho}_1(t_0) = 2.26 \times 10^{-30} \frac{g}{cm^3},$$

$$\rho(t_0) = \frac{3}{8\pi G} \left(H_0^2 - \frac{\Lambda}{3} \right) = 2.68 \times 10^{-30} \frac{g}{cm^3}.$$

- Then, for vacuum energy density of background solution $a_1(t)$ and Λ CDM model, we have

$$\rho(t_0) - \bar{\rho}_1(t_0) = \frac{\Lambda_1 - \Lambda}{8\pi G} = \rho_{\Lambda_1} - \rho_{\Lambda} = 0.42 \times 10^{-30} \frac{g}{cm^3},$$

- Critical energy density: $\rho_c = \frac{3H_0^2}{8\pi G} = 8.51 \times 10^{-30} \frac{g}{cm^3}$

- and consequently,

$$\Omega_{\Lambda_1} = \frac{\rho_{\Lambda_1}}{\rho_c} = 0.734, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c} = 0.685, \quad \Delta\Omega_{\Lambda} = \Omega_{\Lambda_1} - \Omega_{\Lambda} = 0.049, \quad (13)$$

$$\Omega_{m_1} = \frac{\bar{\rho}_1(t_0)}{\rho_c} = 0.266, \quad \Omega_m = \frac{\rho(t_0)}{\rho_c} = 0.315, \quad \Delta\Omega_m = \Omega_m - \Omega_{m_1} = 0.049. \quad (14)$$

- For $t = t_0$, from previous formula, and from Λ CDM model we have

$$\bar{\rho}_1(t_0) = 2.26 \times 10^{-30} \frac{g}{cm^3},$$

$$\rho(t_0) = \frac{3}{8\pi G} \left(H_0^2 - \frac{\Lambda}{3} \right) = 2.68 \times 10^{-30} \frac{g}{cm^3}.$$

- Then, for vacuum energy density of background solution $a_1(t)$ and Λ CDM model, we have

$$\rho(t_0) - \bar{\rho}_1(t_0) = \frac{\Lambda_1 - \Lambda}{8\pi G} = \rho_{\Lambda_1} - \rho_{\Lambda} = 0.42 \times 10^{-30} \frac{g}{cm^3},$$

- Critical energy density: $\rho_c = \frac{3H_0^2}{8\pi G} = 8.51 \times 10^{-30} \frac{g}{cm^3}$

- and consequently,

$$\Omega_{\Lambda_1} = \frac{\rho_{\Lambda_1}}{\rho_c} = 0.734, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c} = 0.685, \quad \Delta\Omega_{\Lambda} = \Omega_{\Lambda_1} - \Omega_{\Lambda} = 0.049, \quad (13)$$

$$\Omega_{m_1} = \frac{\bar{\rho}_1(t_0)}{\rho_c} = 0.266, \quad \Omega_m = \frac{\rho(t_0)}{\rho_c} = 0.315, \quad \Delta\Omega_m = \Omega_m - \Omega_{m_1} = 0.049. \quad (14)$$

- For $t = t_0$, from previous formula, and from Λ CDM model we have

$$\bar{\rho}_1(t_0) = 2.26 \times 10^{-30} \frac{g}{cm^3},$$

$$\rho(t_0) = \frac{3}{8\pi G} \left(H_0^2 - \frac{\Lambda}{3} \right) = 2.68 \times 10^{-30} \frac{g}{cm^3}.$$

- Then, for vacuum energy density of background solution $a_1(t)$ and Λ CDM model, we have

$$\rho(t_0) - \bar{\rho}_1(t_0) = \frac{\Lambda_1 - \Lambda}{8\pi G} = \rho_{\Lambda_1} - \rho_{\Lambda} = 0.42 \times 10^{-30} \frac{g}{cm^3},$$

- Critical energy density: $\rho_c = \frac{3H_0^2}{8\pi G} = 8.51 \times 10^{-30} \frac{g}{cm^3}$

- and consequently,

$$\Omega_{\Lambda_1} = \frac{\rho_{\Lambda_1}}{\rho_c} = 0.734, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c} = 0.685, \quad \Delta\Omega_{\Lambda} = \Omega_{\Lambda_1} - \Omega_{\Lambda} = 0.049, \quad (13)$$

$$\Omega_{m_1} = \frac{\bar{\rho}_1(t_0)}{\rho_c} = 0.266, \quad \Omega_m = \frac{\rho(t_0)}{\rho_c} = 0.315, \quad \Delta\Omega_m = \Omega_m - \Omega_{m_1} = 0.049. \quad (14)$$

- For $t = t_0$, from previous formula, and from Λ CDM model we have

$$\bar{\rho}_1(t_0) = 2.26 \times 10^{-30} \frac{g}{cm^3},$$

$$\rho(t_0) = \frac{3}{8\pi G} \left(H_0^2 - \frac{\Lambda}{3} \right) = 2.68 \times 10^{-30} \frac{g}{cm^3}.$$

- Then, for vacuum energy density of background solution $a_1(t)$ and Λ CDM model, we have

$$\rho(t_0) - \bar{\rho}_1(t_0) = \frac{\Lambda_1 - \Lambda}{8\pi G} = \rho_{\Lambda_1} - \rho_{\Lambda} = 0.42 \times 10^{-30} \frac{g}{cm^3},$$

- Critical energy density: $\rho_c = \frac{3 H_0^2}{8\pi G} = 8.51 \times 10^{-30} \frac{g}{cm^3}$

- and consequently,

$$\Omega_{\Lambda_1} = \frac{\rho_{\Lambda_1}}{\rho_c} = 0.734, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c} = 0.685, \quad \Delta\Omega_{\Lambda} = \Omega_{\Lambda_1} - \Omega_{\Lambda} = 0.049, \quad (13)$$

$$\Omega_{m_1} = \frac{\bar{\rho}_1(t_0)}{\rho_c} = 0.266, \quad \Omega_m = \frac{\rho(t_0)}{\rho_c} = 0.315, \quad \Delta\Omega_m = \Omega_m - \Omega_{m_1} = 0.049. \quad (14)$$

- For $t = t_0$, from previous formula, and from Λ CDM model we have

$$\bar{\rho}_1(t_0) = 2.26 \times 10^{-30} \frac{g}{cm^3},$$

$$\rho(t_0) = \frac{3}{8\pi G} \left(H_0^2 - \frac{\Lambda}{3} \right) = 2.68 \times 10^{-30} \frac{g}{cm^3}.$$

- Then, for vacuum energy density of background solution $a_1(t)$ and Λ CDM model, we have

$$\rho(t_0) - \bar{\rho}_1(t_0) = \frac{\Lambda_1 - \Lambda}{8\pi G} = \rho_{\Lambda_1} - \rho_{\Lambda} = 0.42 \times 10^{-30} \frac{g}{cm^3},$$

- Critical energy density: $\rho_c = \frac{3 H_0^2}{8\pi G} = 8.51 \times 10^{-30} \frac{g}{cm^3}$

- and consequently,

$$\Omega_{\Lambda_1} = \frac{\rho_{\Lambda_1}}{\rho_c} = 0.734, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c} = 0.685, \quad \Delta\Omega_{\Lambda} = \Omega_{\Lambda_1} - \Omega_{\Lambda} = 0.049, \quad (13)$$

$$\Omega_{m_1} = \frac{\bar{\rho}_1(t_0)}{\rho_c} = 0.266, \quad \Omega_m = \frac{\rho(t_0)}{\rho_c} = 0.315, \quad \Delta\Omega_m = \Omega_m - \Omega_{m_1} = 0.049. \quad (14)$$

- According to (13) and (14), we obtain that $\Omega_m = 26.6\%$ corresponds to dark matter and $\Delta\Omega_m = \Delta\Omega_\Lambda = 4.9\%$ is related to visible matter, what is in a very good agreement with the standard model of cosmology.
- Effective pressure. At the beginning, $\tilde{p}_1(0) = \frac{\Lambda_1}{56\pi G} > 0$, then decreases and equals zero at $t = \sqrt{\frac{7}{3\Lambda_1}} = 4.71 \times 10^{17} \text{ s} = 14,917 \times 10^9 \text{ yr}$.
- we have parameter $\tilde{w}_1(t) = \frac{\tilde{p}_1(t)}{\tilde{\rho}_1(t)}$ which has future behavior in agreement with standard model of cosmology, i.e. $\tilde{w}_1(t \rightarrow \infty) \rightarrow -1$.
- Note that $\tilde{H}_1(t)$ has minimum at $t_{min} = 21.1 \times 10^9 \text{ yr}$ and it is $H_1(t_{min}) = 61.72 \text{ km/s/Mpc}$. It also, follows that the Universe experiences decelerated expansion during matter dominance, that turns to acceleration at time $t_{acc} = 7.84 \times 10^9 \text{ yr}$ when, $\tilde{a} = 0$.

- ✳ According to (13) and (14), we obtain that $\Omega_{m_1} = 26, 6\%$ corresponds to dark matter and $\Delta\Omega_m = \Delta\Omega_\Lambda = 4.9\%$ is related to visible matter, what is in a very good agreement with the standard model of cosmology.
- ✳ Effective pressure. At the beginning, $\bar{p}_1(0) = \frac{\Lambda_1}{56\pi G} > 0$, then decreases and equals zero at $t = \sqrt{\frac{7}{3\Lambda_1}} = 4.71 \times 10^{17} \text{ s} = 14,917 \times 10^9 \text{ yr}$.
- ✳ According to (11), we have parameter $\bar{w}_1(t) = \frac{\bar{p}_1(t)}{\bar{\rho}_1(t)}$ which has future behavior in agreement with standard model of cosmology, i.e. $\bar{w}_1(t \rightarrow \infty) \rightarrow -1$.
- ✳ Note that the Hubble parameter has minimum at $t_{min} = 21.1 \times 10^9 \text{ yr}$ and it is $H_1(t_{min}) = 61.72 \text{ km/s/Mpc}$. It also, follows that the Universe experiences decelerated expansion during matter dominance, that turns to acceleration at time $t_{acc} = 7.84 \times 10^9 \text{ yr}$ when, $\ddot{a} = 0$.

- ✳ According to (13) and (14), we obtain that $\Omega_{m_1} = 26.6\%$ corresponds to dark matter and $\Delta\Omega_m = \Delta\Omega_\Lambda = 4.9\%$ is related to visible matter, what is in a very good agreement with the standard model of cosmology.
- ✳ Effective pressure. At the beginning, $\bar{p}_1(0) = \frac{\Lambda_1}{56\pi G} > 0$, then decreases and equals zero at $t = \sqrt{\frac{7}{3\Lambda_1}} = 4.71 \times 10^{17} \text{ s} = 14,917 \times 10^9 \text{ yr}$.
- ✳ According to (11), we have parameter $\bar{w}_1(t) = \frac{\bar{p}_1(t)}{\bar{\rho}_1(t)}$ which has future behavior in agreement with standard model of cosmology, i.e. $\bar{w}_1(t \rightarrow \infty) \rightarrow -1$.
- ✳ Note that the Hubble parameter has minimum at $t_{min} = 21.1 \times 10^9 \text{ yr}$ and it is $H_1(t_{min}) = 61.72 \text{ km/s/Mpc}$. It also, follows that the Universe experiences decelerated expansion during matter dominance, that turns to acceleration at time $t_{acc} = 7.84 \times 10^9 \text{ yr}$ when, $\ddot{a} = 0$.

- ✳ According to (13) and (14), we obtain that $\Omega_{m_1} = 26.6\%$ corresponds to dark matter and $\Delta\Omega_m = \Delta\Omega_\Lambda = 4.9\%$ is related to visible matter, what is in a very good agreement with the standard model of cosmology.
- ✳ Effective pressure. At the beginning, $\bar{p}_1(0) = \frac{\Lambda_1}{56\pi G} > 0$, then decreases and equals zero at $t = \sqrt{\frac{7}{3\Lambda_1}} = 4.71 \times 10^{17} \text{ s} = 14,917 \times 10^9 \text{ yr}$.
- ✳ According to (11), we have parameter $\bar{w}_1(t) = \frac{\bar{p}_1(t)}{\bar{\rho}_1(t)}$ which has future behavior in agreement with standard model of cosmology, i.e. $\bar{w}_1(t \rightarrow \infty) \rightarrow -1$.
- ✳ Note that the Hubble parameter has minimum at $t_{min} = 21.1 \times 10^9 \text{ yr}$ and it is $H_1(t_{min}) = 61.72 \text{ km/s/Mpc}$. It also, follows that the Universe experiences decelerated expansion during matter dominance, that turns to acceleration at time $t_{acc} = 7.84 \times 10^9 \text{ yr}$ when, $\ddot{a} = 0$.

- ✳ According to (13) and (14), we obtain that $\Omega_{m_1} = 26.6\%$ corresponds to dark matter and $\Delta\Omega_m = \Delta\Omega_\Lambda = 4.9\%$ is related to visible matter, what is in a very good agreement with the standard model of cosmology.
- ✳ Effective pressure. At the beginning, $\bar{p}_1(0) = \frac{\Lambda_1}{56\pi G} > 0$, then decreases and equals zero at $t = \sqrt{\frac{7}{3\Lambda_1}} = 4.71 \times 10^{17} \text{ s} = 14,917 \times 10^9 \text{ yr}$.
- ✳ According to (11), we have parameter $\bar{w}_1(t) = \frac{\bar{p}_1(t)}{\bar{\rho}_1(t)}$ which has future behavior in agreement with standard model of cosmology, i.e. $\bar{w}_1(t \rightarrow \infty) \rightarrow -1$.
- ✳ Note that the Hubble parameter has minimum at $t_{min} = 21.1 \times 10^9 \text{ yr}$ and it is $H_1(t_{min}) = 61.72 \text{ km/s/Mpc}$. It also, follows that the Universe experiences decelerated expansion during matter dominance, that turns to acceleration at time $t_{acc} = 7.84 \times 10^9 \text{ yr}$ when, $\ddot{a} = 0$.

- ✳ According to (13) and (14), we obtain that $\Omega_{m_1} = 26, 6\%$ corresponds to dark matter and $\Delta\Omega_m = \Delta\Omega_\Lambda = 4.9\%$ is related to visible matter, what is in a very good agreement with the standard model of cosmology.
- ✳ Effective pressure. At the beginning, $\bar{p}_1(0) = \frac{\Lambda_1}{56\pi G} > 0$, then decreases and equals zero at $t = \sqrt{\frac{7}{3\Lambda_1}} = 4.71 \times 10^{17} \text{ s} = 14,917 \times 10^9 \text{ yr}$.
- ✳ ▶ According to (11), we have parameter $\bar{w}_1(t) = \frac{\bar{p}_1(t)}{\bar{\rho}_1(t)}$ which has future behavior in agreement with standard model of cosmology, i.e. $\bar{w}_1(t \rightarrow \infty) \rightarrow -1$.
- ✳ Note that ▶ the Hubble parameter has minimum at $t_{min} = 21.1 \times 10^9 \text{ yr}$ and it is $H_1(t_{min}) = 61.72 \text{ km/s/Mpc}$. It also, follows that the Universe experiences decelerated expansion during matter dominance, that turns to acceleration at time $t_{acc} = 7.84 \times 10^9 \text{ yr}$ when, $\ddot{a} = 0$.

- ④ We want to investigate our model outside the spherically symmetric massive body - it is natural to consider a generalization of the Schwarzschild-de Sitter (SdS) metric starting from the standard Schwarzschild expression,

$$ds^2 = -A(r)dr^2 + B(r)dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \quad (15)$$

- ④ The corresponding scalar curvature R of above metric (15)

$$R = \frac{2}{r^2} - \frac{2}{r^2 B(r)} - \frac{2A'(r)}{rA(r)B(r)} + \frac{A'(r)^2}{2A(r)^2B(r)} + \frac{2B'(r)}{rB^2(r)} + \frac{A'(r)B'(r)}{2A(r)B(r)^2} - \frac{A''(r)}{A(r)B(r)} \quad (16)$$

- ④ We need to solve the equation

$$\square u(r) = \frac{1}{B(r)} \left(\Delta u(r) + \frac{1}{2} \left(\frac{A'(r)}{A(r)} - \frac{B'(r)}{B(r)} \right) u'(r) \right) = q u(r), \quad u(r) = \sqrt{R - 2\Lambda}, \quad (17)$$

where

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial}{\partial r} \right] = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \quad (18)$$

is the Laplace operator in spherical coordinate r .

- ✳ We want to investigate our model outside the spherically symmetric massive body - it is natural to consider a generalization of the Schwarzschild-de Sitter (SdS) metric starting from the standard Schwarzschild expression,

$$ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2. \quad \text{SdS metric-GC} \quad (15)$$

- ✳ The corresponding scalar curvature R of above metric (15)

$$R = \frac{2}{r^2} - \frac{2}{r^2 B(r)} - \frac{2A'(r)}{rA(r)B(r)} + \frac{A'(r)^2}{2A(r)^2 B(r)} + \frac{2B'(r)}{rB^2(r)} + \frac{A'(r)B'(r)}{2A(r)B(r)^2} - \frac{A''(r)}{A(r)B(r)} \quad (16)$$

- ✳ We need to solve the equation

$$\square u(r) = \frac{1}{B(r)} \left(\Delta u(r) + \frac{1}{2} \left(\frac{A'(r)}{A(r)} - \frac{B'(r)}{B(r)} \right) u'(r) \right) = q u(r), \quad u(r) = \sqrt{R - 2\Lambda}, \quad (17)$$

where

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial}{\partial r} \right] = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \quad (18)$$

is the Laplace operator in spherical coordinate r .

- ✳ We want to investigate our model outside the spherically symmetric massive body - it is natural to consider a generalization of the Schwarzschild-de Sitter (SdS) metric starting from the standard Schwarzschild expression,

$$ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2. \quad \text{SdS metric-GC} \quad (15)$$

- ✳ The corresponding scalar curvature R of above metric (15)

$$R = \frac{2}{r^2} - \frac{2}{r^2 B(r)} - \frac{2A'(r)}{rA(r)B(r)} + \frac{A'(r)^2}{2A(r)^2B(r)} + \frac{2B'(r)}{rB^2(r)} + \frac{A'(r)B'(r)}{2A(r)B(r)^2} - \frac{A''(r)}{A(r)B(r)} \quad (16)$$

- ✳ We need to solve the equation

$$\square u(r) = \frac{1}{B(r)} \left(\Delta u(r) + \frac{1}{2} \left(\frac{A'(r)}{A(r)} - \frac{B'(r)}{B(r)} \right) u'(r) \right) = q u(r), \quad u(r) = \sqrt{R - 2\Lambda}, \quad (17)$$

where

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial}{\partial r} \right] = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \quad (18)$$

is the Laplace operator in spherical coordinate r .

- ✳ We want to investigate our model outside the spherically symmetric massive body - it is natural to consider a generalization of the Schwarzschild-de Sitter (SdS) metric starting from the standard Schwarzschild expression,

$$ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2. \quad \text{SdS metric-GC} \quad (15)$$

- ✳ The corresponding scalar curvature R of above metric (15)

$$R = \frac{2}{r^2} - \frac{2}{r^2 B(r)} - \frac{2A'(r)}{rA(r)B(r)} + \frac{A'(r)^2}{2A(r)^2 B(r)} + \frac{2B'(r)}{rB^2(r)} + \frac{A'(r)B'(r)}{2A(r)B(r)^2} - \frac{A''(r)}{A(r)B(r)} \quad (16)$$

- ✳ We need to solve the equation

$$\square u(r) = \frac{1}{B(r)} \left(\Delta u(r) + \frac{1}{2} \left(\frac{A'(r)}{A(r)} - \frac{B'(r)}{B(r)} \right) u'(r) \right) = q u(r), \quad u(r) = \sqrt{R - 2\Lambda}, \quad (17)$$

where

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial}{\partial r} \right] = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \quad (18)$$

is the Laplace operator in spherical coordinate r .

- ✳ We want to investigate our model outside the spherically symmetric massive body - it is natural to consider a generalization of the Schwarzschild-de Sitter (SdS) metric starting from the standard Schwarzschild expression,

$$ds^2 = -A(r)dt^2 + B(r)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2. \quad \text{SdS metric-GC} \quad (15)$$

- ✳ The corresponding scalar curvature R of above metric (15)

$$R = \frac{2}{r^2} - \frac{2}{r^2 B(r)} - \frac{2A'(r)}{rA(r)B(r)} + \frac{A'(r)^2}{2A(r)^2 B(r)} + \frac{2B'(r)}{rB^2(r)} + \frac{A'(r)B'(r)}{2A(r)B(r)^2} - \frac{A''(r)}{A(r)B(r)} \quad (16)$$

- ✳ We need to solve the equation

$$\square u(r) = \frac{1}{B(r)} \left(\Delta u(r) + \frac{1}{2} \left(\frac{A'(r)}{A(r)} - \frac{B'(r)}{B(r)} \right) u'(r) \right) = q u(r), \quad u(r) = \sqrt{R - 2\Lambda}, \quad (17)$$

where

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial}{\partial r} \right] = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \quad (18)$$

is the Laplace operator in spherical coordinate r .

- ⊗ Local de Sitter case, with static spherically symmetric body of mass M , the Schwarzschild-de Sitter metric (15) is

$$A(r) = A_0(r) = 1 - \frac{\mu}{r} - \frac{M^2}{3}, \quad B(r) = B_0(r) = \frac{1}{A_0(r)}, \quad \mu = \frac{2GM}{c^2}. \quad (19)$$

- ⊗ It makes sense to suppose that solution of equation (17) is of the form

$$A(r) = A_0(r) - \alpha(r), \quad B(r) = \frac{1}{A_0(r) - \beta(r)}, \quad (20)$$

where $\alpha(r)$ and $\beta(r)$ are some dimensionless functions. When $\zeta = q/\Lambda \rightarrow 0$, then nonlocal operator nonlocal de Sitter \sqrt{dS} gravity model (9) becomes local.

- ⊗ It must be that $A(r) \rightarrow A_0(r)$ and $B(r) \rightarrow B_0(r)$ when $\zeta \rightarrow 0$, that is $\alpha(r) \rightarrow 0$ and $\beta(r) \rightarrow 0$ as $\zeta \rightarrow 0$.
- ⊗ After replacing $A = A_0 - \alpha(r)$ and $B = \frac{1}{A_0 - \beta(r)}$ in scalar curvature R and in operator \square of equation (17), we obtain

- ⊗ Local de Sitter case, with static spherically symmetric body of mass M , the Schwarzschild-de Sitter metric (15) is

$$A(r) = A_0(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3}, \quad B(r) = B_0(r) = \frac{1}{A_0(r)}, \quad \mu = \frac{2GM}{c^2}. \quad (19)$$

- ⊗ It makes sense to suppose that solution of equation (17) is of the form

$$A(r) = A_0(r) - \alpha(r), \quad B(r) = \frac{1}{A_0(r) - \beta(r)}, \quad (20)$$

where $\alpha(r)$ and $\beta(r)$ are some dimensionless functions. When $\zeta = q/\Lambda \rightarrow 0$, then nonlocal operator nonlocal de Sitter \sqrt{dS} gravity model (9) becomes local.

- ⊗ It must be that $A(r) \rightarrow A_0(r)$ and $B(r) \rightarrow B_0(r)$ when $\zeta \rightarrow 0$, that is $\alpha(r) \rightarrow 0$ and $\beta(r) \rightarrow 0$ as $\zeta \rightarrow 0$.
- ⊗ After replacing $A = A_0 - \alpha(r)$ and $B = \frac{1}{A_0 - \beta(r)}$ in scalar curvature R and in operator \square of equation (17), we obtain

- ⊗ Local de Sitter case, with static spherically symmetric body of mass M , the Schwarzschild-de Sitter metric (15) is

$$A(r) = A_0(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3}, \quad B(r) = B_0(r) = \frac{1}{A_0(r)}, \quad \mu = \frac{2GM}{c^2}. \quad (19)$$

- ⊗ It makes sense to suppose that solution of equation (17) is of the form

$$A(r) = A_0(r) - \alpha(r), \quad B(r) = \frac{1}{A_0(r) - \beta(r)}, \quad (20)$$

where $\alpha(r)$ and $\beta(r)$ are some dimensionless functions. When $\zeta = q/\Lambda \rightarrow 0$, then nonlocal operator nonlocal de Sitter \sqrt{dS} gravity model (9) becomes local.

- ⊗ It must be that $A(r) \rightarrow A_0(r)$ and $B(r) \rightarrow B_0(r)$ when $\zeta \rightarrow 0$, that is $\alpha(r) \rightarrow 0$ and $\beta(r) \rightarrow 0$ as $\zeta \rightarrow 0$.
- ⊗ After replacing $A = A_0 - \alpha(r)$ and $B = \frac{1}{A_0 - \beta(r)}$ in scalar curvature R and in operator \square of equation (17), we obtain

- ⊗ Local de Sitter case, with static spherically symmetric body of mass M , the Schwarzschild-de Sitter metric (15) is

$$A(r) = A_0(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3}, \quad B(r) = B_0(r) = \frac{1}{A_0(r)}, \quad \mu = \frac{2GM}{c^2}. \quad (19)$$

- ⊗ It makes sense to suppose that solution of equation (17) is of the form

$$A(r) = A_0(r) - \alpha(r), \quad B(r) = \frac{1}{A_0(r) - \beta(r)}, \quad (20)$$

where $\alpha(r)$ and $\beta(r)$ are some dimensionless functions. When $\zeta = q/\Lambda \rightarrow 0$, then nonlocal operator nonlocal de Sitter \sqrt{dS} gravity model (9) becomes local.

- ⊗ It must be that $A(r) \rightarrow A_0(r)$ and $B(r) \rightarrow B_0(r)$ when $\zeta \rightarrow 0$, that is $\alpha(r) \rightarrow 0$ and $\beta(r) \rightarrow 0$ as $\zeta \rightarrow 0$.
- ⊗ After replacing $A = A_0 - \alpha(r)$ and $B = \frac{1}{A_0 - \beta(r)}$ in scalar curvature R and in operator \square of equation (17), we obtain

- ⊗ Local de Sitter case, with static spherically symmetric body of mass M , the Schwarzschild-de Sitter metric (15) is

$$A(r) = A_0(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3}, \quad B(r) = B_0(r) = \frac{1}{A_0(r)}, \quad \mu = \frac{2GM}{c^2}. \quad (19)$$

- ⊗ It makes sense to suppose that solution of equation (17) is of the form

$$A(r) = A_0(r) - \alpha(r), \quad B(r) = \frac{1}{A_0(r) - \beta(r)}, \quad (20)$$

where $\alpha(r)$ and $\beta(r)$ are some dimensionless functions. When $\zeta = q/\Lambda \rightarrow 0$, then nonlocal operator nonlocal de Sitter \sqrt{dS} gravity model (9) becomes local.

- ⊗ It must be that $A(r) \rightarrow A_0(r)$ and $B(r) \rightarrow B_0(r)$ when $\zeta \rightarrow 0$, that is $\alpha(r) \rightarrow 0$ and $\beta(r) \rightarrow 0$ as $\zeta \rightarrow 0$.
- ⊗ After replacing $A = A_0 - \alpha(r)$ and $B = \frac{1}{A_0 - \beta(r)}$ in scalar curvature R and in operator \square of equation (17), we obtain

- ⊗ Local de Sitter case, with static spherically symmetric body of mass M , the Schwarzschild-de Sitter metric (15) is

$$A(r) = A_0(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3}, \quad B(r) = B_0(r) = \frac{1}{A_0(r)}, \quad \mu = \frac{2GM}{c^2}. \quad (19)$$

- ⊗ It makes sense to suppose that solution of equation (17) is of the form

$$A(r) = A_0(r) - \alpha(r), \quad B(r) = \frac{1}{A_0(r) - \beta(r)}, \quad (20)$$

where $\alpha(r)$ and $\beta(r)$ are some dimensionless functions. When $\zeta = q/\Lambda \rightarrow 0$, then nonlocal operator nonlocal de Sitter \sqrt{dS} gravity model (9) becomes local.

- ⊗ It must be that $A(r) \rightarrow A_0(r)$ and $B(r) \rightarrow B_0(r)$ when $\zeta \rightarrow 0$, that is $\alpha(r) \rightarrow 0$ and $\beta(r) \rightarrow 0$ as $\zeta \rightarrow 0$.
- ⊗ After replacing $A = A_0 - \alpha(r)$ and $B = \frac{1}{A_0 - \beta(r)}$ in scalar curvature R and in operator \square of equation (17), we obtain

$$R = \frac{2}{r^2} (1 - A_0 + \beta) + 2 \frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} - \frac{1}{r} \right) - 2 (A'_0 - \beta') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} + \frac{1}{r} \right) - \frac{A_0 - \beta}{A_0 - \alpha} (A''_0 - \alpha''), \quad (21)$$

$$\square u = (A_0 - \beta) \Delta u + \frac{1}{2} \left[\frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') + A'_0 - \beta' \right] u' = qu, \quad u = \sqrt{R - 2\Lambda} \quad (22)$$

- If we substitute expressions (21) and (22) in eigenvalue problem for \square operator, we will get a differential equation in $\alpha(r)$ and $\beta(r)$. Since, in the local case holds $B_0(r) = 1/A_0(r)$, there is a sense to take $B(r) = 1/A(r)$ in the nonlocal case, it means $\beta(r) = \alpha(r)$, and it yields:

$$R(r) = \frac{1}{r^2} [2 - 2A(r) - 4rA'(r) - r^2A''(r)] - \frac{1}{r^2} \frac{\partial^2}{\partial r^2} [r^2(1 - A(r))], \quad (23)$$

$$\square u(r) = A(r) u''(r) + (A'(r) + \frac{2}{r} A(r)) u'(r) = \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 A(r) \frac{\partial u}{\partial r}]. \quad (24)$$

$$R = \frac{2}{r^2} (1 - A_0 + \beta) + 2 \frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} - \frac{1}{r} \right) - 2(A'_0 - \beta') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} + \frac{1}{r} \right) - \frac{A_0 - \beta}{A_0 - \alpha} (A''_0 - \alpha''), \quad (21)$$

$$\square u = (A_0 - \beta) \Delta u + \frac{1}{2} \left[\frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') + A'_0 - \beta' \right] u' = qu, \quad u = \sqrt{R - 2\Lambda} \quad (22)$$

- ⊗ If we substitute expressions (21) and (22) in eigenvalue problem for \square operator, we will get a differential equation in $\alpha(r)$ and $\beta(r)$. Since, in the local case holds $B_0(r) = 1/A_0(r)$, there is a sense to take $B(r) = 1/A(r)$ in the nonlocal case, it means $\beta(r) = \alpha(r)$, and it yields:

$$R(r) = \frac{1}{r^2} [2 - 2A(r) - 4rA'(r) - r^2 A''(r)] = \frac{1}{r^2} \frac{\partial^2}{\partial r^2} [r^2 (1 - A(r))], \quad (23)$$

$$\square u(r) = A(r) u''(r) + (A'(r) + \frac{2}{r} A(r)) u'(r) = \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 A(r) \frac{\partial u}{\partial r}]. \quad (24)$$

$$R = \frac{2}{r^2} (1 - A_0 + \beta) + 2 \frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} - \frac{1}{r} \right) - 2(A'_0 - \beta') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} + \frac{1}{r} \right) - \frac{A_0 - \beta}{A_0 - \alpha} (A''_0 - \alpha''), \quad (21)$$

$$\square u = (A_0 - \beta) \Delta u + \frac{1}{2} \left[\frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') + A'_0 - \beta' \right] u' = qu, \quad u = \sqrt{R - 2\Lambda} \quad (22)$$

- ⊗ If we substitute expressions (21) and (22) in eigenvalue problem for \square operator, we will get a differential equation in $\alpha(r)$ and $\beta(r)$. Since, in the local case holds $B_0(r) = 1/A_0(r)$, there is a sense to take $B(r) = 1/A(r)$ in the nonlocal case, it means $\beta(r) = \alpha(r)$, and it yields:

$$R(r) = \frac{1}{r^2} [2 - 2A(r) - 4rA'(r) - r^2 A''(r)] = \frac{1}{r^2} \frac{\partial^2}{\partial r^2} [r^2 (1 - A(r))], \quad (23)$$

$$\square u(r) = A(r) u''(r) + (A'(r) + \frac{2}{r} A(r)) u'(r) = \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 A(r) \frac{\partial u}{\partial r}]. \quad (24)$$

$$R = \frac{2}{r^2} (1 - A_0 + \beta) + 2 \frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} - \frac{1}{r} \right) - 2(A'_0 - \beta') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} + \frac{1}{r} \right) - \frac{A_0 - \beta}{A_0 - \alpha} (A''_0 - \alpha''), \quad (21)$$

$$\square u = (A_0 - \beta) \Delta u + \frac{1}{2} \left[\frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') + A'_0 - \beta' \right] u' = qu, \quad u = \sqrt{R - 2\Lambda} \quad (22)$$

- ✳ If we substitute expressions (21) and (22) in eigenvalue problem for \square operator, we will get a differential equation in $\alpha(r)$ and $\beta(r)$. Since, in the local case holds $B_0(r) = 1/A_0(r)$, there is a sense to take $B(r) = 1/A(r)$ in the nonlocal case, it means $\beta(r) = \alpha(r)$, and it yields:

$$R(r) = \frac{1}{r^2} [2 - 2A(r) - 4rA'(r) - r^2 A''(r)] = \frac{1}{r^2} \frac{\partial^2}{\partial r^2} [r^2 (1 - A(r))], \quad (23)$$

$$\square u(r) = A(r) u''(r) + (A'(r) + \frac{2}{r} A(r)) u'(r) = \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 A(r) \frac{\partial u}{\partial r}]. \quad (24)$$

$$R = \frac{2}{r^2} (1 - A_0 + \beta) + 2 \frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} - \frac{1}{r} \right) - 2(A'_0 - \beta') \left(\frac{1}{4} \frac{A'_0 - \alpha'}{A_0 - \alpha} + \frac{1}{r} \right) - \frac{A_0 - \beta}{A_0 - \alpha} (A''_0 - \alpha''), \quad (21)$$

$$\square u = (A_0 - \beta) \triangle u + \frac{1}{2} \left[\frac{A_0 - \beta}{A_0 - \alpha} (A'_0 - \alpha') + A'_0 - \beta' \right] u' = qu, \quad u = \sqrt{R - 2\Lambda} \quad (22)$$

- ✳ If we substitute expressions (21) and (22) in eigenvalue problem for \square operator, we will get a differential equation in $\alpha(r)$ and $\beta(r)$. Since, in the local case holds $B_0(r) = 1/A_0(r)$, there is a sense to take $B(r) = 1/A(r)$ in the nonlocal case, it means $\beta(r) = \alpha(r)$, and it yields:

$$R(r) = \frac{1}{r^2} [2 - 2A(r) - 4rA'(r) - r^2A''(r)] = \frac{1}{r^2} \frac{\partial^2}{\partial r^2} [r^2(1 - A(r))], \quad (23)$$

$$\square u(r) = A(r) u''(r) + (A'(r) + \frac{2}{r} A(r)) u'(r) = \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 A(r) \frac{\partial u}{\partial r}]. \quad (24)$$

- ④ If we put $\beta(r) = \alpha(r)$ in (21) and (22), we get

$$R = 4\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha'', \quad (25)$$

$$\square u = (A_0 - \alpha) \Delta u + (A'_0 - \alpha') u' = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (26)$$

- ④ We want to find function $\alpha(r)$, and we use substitution of

$$u = \sqrt{R - 2\Lambda} = \sqrt{2\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha''} \quad (27)$$

into equation (26).

- ④ One gets an ordinary nonlinear differential equation of the fourth order, since it is nonlinear, it is a very difficult task to find the corresponding exact solution. In the sequel of this lecture we will turn our attention to the corresponding linear differential equation: it means we will limit ourselves to studying the Schwarzschild-de Sitter metric in weak gravity field approximation.

- ⊗ If we put $\beta(r) = \alpha(r)$ in (21) and (22), we get

$$R = 4\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha'', \quad (25)$$

$$\square u = (A_0 - \alpha)\Delta u + (A'_0 - \alpha')u' = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (26)$$

- ⊗ We want to find function $\alpha(r)$, and we use substitution of

$$u = \sqrt{R - 2\Lambda} = \sqrt{2\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha''} \quad (27)$$

into equation (26).

- ⊗ One gets an ordinary nonlinear differential equation of the fourth order, since it is nonlinear, it is a very difficult task to find the corresponding exact solution. In the sequel of this lecture we will turn our attention to the corresponding linear differential equation: it means we will limit ourselves to studying the Schwarzschild-de Sitter metric in weak gravity field approximation.

- ✳ If we put $\beta(r) = \alpha(r)$ in (21) and (22), we get

$$R = 4\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha'', \quad (25)$$

$$\square u = (A_0 - \alpha)\Delta u + (A'_0 - \alpha')u' = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (26)$$

- ✳ We want to find function $\alpha(r)$, and we use substitution of

$$u = \sqrt{R - 2\Lambda} = \sqrt{2\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha''} \quad (27)$$

into equation (26).

- ✳ One gets an ordinary nonlinear differential equation of the fourth order, since it is nonlinear, it is a very difficult task to find the corresponding exact solution. In the sequel of this lecture we will turn our attention to the corresponding linear differential equation: it means we will limit ourselves to studying the Schwarzschild-de Sitter metric in weak gravity field approximation.

- ✳ If we put $\beta(r) = \alpha(r)$ in (21) and (22), we get

$$R = 4\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha'', \quad (25)$$

$$\square u = (A_0 - \alpha)\Delta u + (A'_0 - \alpha')u' = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (26)$$

- ✳ We want to find function $\alpha(r)$, and we use substitution of

$$u = \sqrt{R - 2\Lambda} = \sqrt{2\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha''} \quad (27)$$

into equation (26).

- ✳ One gets an ordinary nonlinear differential equation of the fourth order, since it is nonlinear, it is a very difficult task to find the corresponding exact solution. In the sequel of this lecture we will turn our attention to the corresponding linear differential equation: it means we will limit ourselves to studying the Schwarzschild-de Sitter metric in weak gravity field approximation.

- ✳ If we put $\beta(r) = \alpha(r)$ in (21) and (22), we get

$$R = 4\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha'', \quad (25)$$

$$\square u = (A_0 - \alpha)\Delta u + (A'_0 - \alpha')u' = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (26)$$

- ✳ We want to find function $\alpha(r)$, and we use substitution of

$$u = \sqrt{R - 2\Lambda} = \sqrt{2\Lambda + \frac{2\alpha}{r^2} + \frac{4\alpha'}{r} + \alpha''} \quad (27)$$

into equation (26).

- ✳ One gets an ordinary nonlinear differential equation of the fourth order, since it is nonlinear, it is a very difficult task to find the corresponding exact solution. In the sequel of this lecture we will turn our attention to the corresponding linear differential equation: it means we will limit ourselves to studying the Schwarzschild-de Sitter metric in weak gravity field approximation.

- It is like considering gravity field far from a massive body, so \square can be replaced by the Laplacian Δ in equation (26). In such case we will take $A(r) \approx 1$ in (26), that is

$$A(r) = A_0(r) - \alpha(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} - \alpha(r) \approx 1, \quad (28)$$

i.e. if the following is satisfied,

$$\frac{\mu}{r} \ll 1, \quad \frac{\Lambda r^2}{3} \ll 1, \quad |\alpha(r)| \ll 1. \quad (29)$$

- Applying approximation (28) in (26), we get the following simple equation linear in $u(r)$:

$$\Delta u = qu, \quad \text{that is} \quad \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (30)$$

- It is like considering gravity field far from a massive body, so \square can be replaced by the Laplacian Δ in equation (26). In such case we will take $A(r) \approx 1$ in (26), that is

$$A(r) = A_0(r) - \alpha(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} - \alpha(r) \approx 1, \quad (28)$$

i.e. if the following is satisfied,

$$\frac{\mu}{r} \ll 1, \quad \frac{\Lambda r^2}{3} \ll 1, \quad |\alpha(r)| \ll 1. \quad (29)$$

- Applying approximation (28) in (26), we get the following simple equation linear in $u(r)$:

$$\Delta u = qu, \quad \text{that is} \quad \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (30)$$

- It is like considering gravity field far from a massive body, so \square can be replaced by the Laplacian Δ in equation (26). In such case we will take $A(r) \approx 1$ in (26), that is

$$A(r) = A_0(r) - \alpha(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} - \alpha(r) \approx 1, \quad (28)$$

i.e. if the following is satisfied,

$$\frac{\mu}{r} \ll 1, \quad \frac{\Lambda r^2}{3} \ll 1, \quad |\alpha(r)| \ll 1. \quad (29)$$

- Applying approximation (28) in (26), we get the following simple equation linear in $u(r)$:

$$\Delta u = qu, \quad \text{that is} \quad \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (30)$$

- It is like considering gravity field far from a massive body, so \Box can be replaced by the Laplacian Δ in equation (26). In such case we will take $A(r) \approx 1$ in (26), that is

$$A(r) = A_0(r) - \alpha(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} - \alpha(r) \approx 1, \quad (28)$$

i.e. if the following is satisfied,

$$\frac{\mu}{r} \ll 1, \quad \frac{\Lambda r^2}{3} \ll 1, \quad |\alpha(r)| \ll 1. \quad (29)$$

- Applying approximation (28) in (26), we get the following simple equation linear in $u(r)$:

$$\Delta u = qu, \quad \text{that is} \quad \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} = qu, \quad u = \sqrt{R - 2\Lambda}. \quad (30)$$

⊗ After the linearization of $\sqrt{R - 2\Lambda}$, we get

$$(R - 4\Lambda)'' + \frac{2}{r}(R - 4\Lambda)' = q(R - 4\Lambda), \quad (31)$$

and using (25) we obtain the following linear differential equation,

$$\alpha'''' + \frac{6}{r}\alpha''' + \frac{2}{r^2}\alpha'' - \frac{4}{\beta}\alpha' + \frac{4}{\beta}\alpha = q(\alpha'' + \frac{4}{r}\alpha' + \frac{2}{r^2}\alpha). \quad (32)$$

⊗ Previous equation (32) has a general solution for $q = \zeta\Lambda$,

$$\alpha(r) = \frac{C_1}{r} + \frac{C_2}{r^2} + C_3 e^{-\sqrt{\zeta}\Lambda r} \left(\frac{1}{\zeta r} + \frac{2}{\zeta^2 r^2} \right) + C_4 e^{\sqrt{\zeta}\Lambda r} \left(\frac{1}{\zeta r} - \frac{2}{\zeta^2 r^2} \right). \quad (33)$$

⊗ There are four constants ($C_1 - C_4$) and we want to chose them such that the appropriate particular solution for $\alpha(r)$ has some physical meaning, i.e. $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

⊗ After the linearization of $\sqrt{R - 2\Lambda}$, we get

$$(R - 4\Lambda)'' + \frac{2}{r}(R - 4\Lambda)' = q(R - 4\Lambda), \quad (31)$$

and using (25) we obtain the following linear differential equation,

$$\alpha''' + \frac{6}{r}\alpha''' + \frac{2}{r^2}\alpha'' - \frac{4}{r^3}\alpha' + \frac{4}{r^4}\alpha = q(\alpha'' + \frac{4}{r}\alpha' + \frac{2}{r^2}\alpha). \quad (32)$$

⊗ Previous equation (32) has a general solution for $q = \zeta\Lambda$,

$$\alpha(r) = \frac{C_1}{r} + \frac{C_2}{r^2} + C_3 e^{-\sqrt{q}r} \left(\frac{1}{qr} + \frac{2}{q^{\frac{3}{2}}r^2} \right) + C_4 e^{\sqrt{q}r} \left(\frac{1}{qr} - \frac{2}{q^{\frac{3}{2}}r^2} \right). \quad (33)$$

⊗ There are four constants ($C_1 - C_4$) and we want to chose them such that the appropriate particular solution for $\alpha(r)$ has some physical meaning, i.e. $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- After the linearization of $\sqrt{R - 2\Lambda}$, we get

$$(R - 4\Lambda)'' + \frac{2}{r}(R - 4\Lambda)' = q(R - 4\Lambda), \quad (31)$$

and using (25) we obtain the following linear differential equation,

$$\alpha''' + \frac{6}{r}\alpha''' + \frac{2}{r^2}\alpha'' - \frac{4}{r^3}\alpha' + \frac{4}{r^4}\alpha = q(\alpha'' + \frac{4}{r}\alpha' + \frac{2}{r^2}\alpha). \quad (32)$$

- Previous equation (32) has a general solution for $q = \zeta\Lambda$,

$$\alpha(r) = \frac{C_1}{r} + \frac{C_2}{r^2} + C_3 e^{-\sqrt{q}r} \left(\frac{1}{qr} + \frac{2}{q^{\frac{3}{2}}r^2} \right) + C_4 e^{\sqrt{q}r} \left(\frac{1}{qr} - \frac{2}{q^{\frac{3}{2}}r^2} \right). \quad (33)$$

- There are four constants ($C_1 - C_4$) and we want to chose them such that the appropriate particular solution for $\alpha(r)$ has some physical meaning, i.e. $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- After the linearization of $\sqrt{R - 2\Lambda}$, we get

$$(R - 4\Lambda)'' + \frac{2}{r}(R - 4\Lambda)' = q(R - 4\Lambda), \quad (31)$$

and using (25) we obtain the following linear differential equation,

$$\alpha'''' + \frac{6}{r}\alpha'''' + \frac{2}{r^2}\alpha'' - \frac{4}{r^3}\alpha' + \frac{4}{r^4}\alpha = q(\alpha'' + \frac{4}{r}\alpha' + \frac{2}{r^2}\alpha). \quad (32)$$

- Previous equation (32) has a general solution for $q = \zeta\Lambda$,

$$\alpha(r) = \frac{C_1}{r} + \frac{C_2}{r^2} + C_3 e^{-\sqrt{q}r} \left(\frac{1}{qr} + \frac{2}{q^{\frac{3}{2}}r^2} \right) + C_4 e^{\sqrt{q}r} \left(\frac{1}{qr} - \frac{2}{q^{\frac{3}{2}}r^2} \right). \quad (33)$$

- There are four constants ($C_1 - C_4$) and we want to chose them such that the appropriate particular solution for $\alpha(r)$ has some physical meaning, i.e. $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- After the linearization of $\sqrt{R - 2\Lambda}$, we get

$$(R - 4\Lambda)'' + \frac{2}{r}(R - 4\Lambda)' = q(R - 4\Lambda), \quad (31)$$

and using (25) we obtain the following linear differential equation,

$$\alpha'''' + \frac{6}{r}\alpha'''' + \frac{2}{r^2}\alpha'' - \frac{4}{r^3}\alpha' + \frac{4}{r^4}\alpha = q(\alpha'' + \frac{4}{r}\alpha' + \frac{2}{r^2}\alpha). \quad (32)$$

- Previous equation (32) has a general solution for $q = \zeta\Lambda$,

$$\alpha(r) = \frac{C_1}{r} + \frac{C_2}{r^2} + C_3 e^{-\sqrt{q}r} \left(\frac{1}{qr} + \frac{2}{q^{\frac{3}{2}}r^2} \right) + C_4 e^{\sqrt{q}r} \left(\frac{1}{qr} - \frac{2}{q^{\frac{3}{2}}r^2} \right). \quad (33)$$

- There are four constants ($C_1 - C_4$) and we want to chose them such that the appropriate particular solution for $\alpha(r)$ has some physical meaning, i.e. $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ④ One such choice is: $C_1 = -\delta/\sqrt{q}$, $C_2 = 2\delta/q$, $C_3 = -\delta\sqrt{q}$, $C_4 = 0$.
- ④ C_4 has to vanish, since we have exclude term with $e^{\sqrt{q}r}$ in (33).
- ④ In this case solution for $\alpha(r)$, is

$$\alpha(r) = -\frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r}\right) + \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r}\right), \quad q = \zeta\Lambda, \quad (34)$$

where δ is dimensionless parameter.

- ④ Since integration constants C_1, C_2, C_3 are proportional to δ , and $C_4 = 0$, we reduced the number of parameters from 4 to 1. We have two free parameters (δ and ζ) which should be determined from measurements.
- ④ The Taylor expansion of $\alpha(r)$ gives

$$\alpha(r) = -\frac{\delta\sqrt{\zeta\Lambda}}{6} r + o(\zeta r^2), \quad (35)$$

and we conclude that $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ⊗ One such choice is: $C_1 = -\delta/\sqrt{q}$, $C_2 = 2\delta/q$, $C_3 = -\delta\sqrt{q}$; $C_4 = 0$.
- ⊗ C_4 has to vanish, since we have exclude term with $e^{\sqrt{q}r}$ in (33).
- ⊗ In this case solution for $\alpha(r)$, is

$$\alpha(r) = -\frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r}\right) + \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r}\right), \quad q = \zeta\Lambda, \quad (34)$$

where δ is dimensionless parameter.

- ⊗ Since integration constants C_1, C_2, C_3 are proportional to δ , and $C_4 = 0$, we reduced the number of parameters from 4 to 1. We have two free parameters (δ and ζ) which should be determined from measurements.
- ⊗ The Taylor expansion of $\alpha(r)$ gives

$$\alpha(r) = -\frac{\delta\sqrt{\zeta\Lambda}}{6} r + o(\zeta r^2), \quad (35)$$

and we conclude that $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ✳ One such choice is: $C_1 = -\delta/\sqrt{q}$, $C_2 = 2\delta/q$, $C_3 = -\delta\sqrt{q}$; $C_4 = 0$.
- ✳ C_4 has to vanish, since we have exclude term with $e^{\sqrt{q}r}$ in (33).
- ✳ In this case solution for $\alpha(r)$, is

$$\alpha(r) = -\frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r}\right) + \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r}\right), \quad q = \zeta\Lambda, \quad (34)$$

where δ is dimensionless parameter.

- ✳ Since integration constants C_1, C_2, C_3 are proportional to δ , and $C_4 = 0$, we reduced the number of parameters from 4 to 1. We have two free parameters (δ and ζ) which should be determined from measurements.
- ✳ The Taylor expansion of $\alpha(r)$ gives

$$\alpha(r) = -\frac{\delta\sqrt{\zeta\Lambda}}{6} r + o(\zeta r^2), \quad (35)$$

and we conclude that $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ✳ One such choice is: $C_1 = -\delta/\sqrt{q}$, $C_2 = 2\delta/q$, $C_3 = -\delta\sqrt{q}$; $C_4 = 0$.
- ✳ C_4 has to vanish, since we have exclude term with $e^{\sqrt{q}r}$ in (33).
- ✳ In this case solution for $\alpha(r)$, is

$$\alpha(r) = -\frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r}\right) + \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r}\right), \quad q = \zeta\Lambda, \quad (34)$$

where δ is dimensionless parameter.

- ✳ Since integration constants C_1, C_2, C_3 are proportional to δ , and $C_4 = 0$, we reduced the number of parameters from 4 to 1. We have two free parameters (δ and ζ) which should be determined from measurements.
- ✳ The Taylor expansion of $\alpha(r)$ gives

$$\alpha(r) = -\frac{\delta\sqrt{\zeta\Lambda}}{6} r + o(\zeta r^2), \quad (35)$$

and we conclude that $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ✳ One such choice is: $C_1 = -\delta/\sqrt{q}$, $C_2 = 2\delta/q$, $C_3 = -\delta\sqrt{q}$; $C_4 = 0$.
- ✳ C_4 has to vanish, since we have exclude term with $e^{\sqrt{q}r}$ in (33).
- ✳ In this case solution for $\alpha(r)$, is

$$\alpha(r) = -\frac{\delta}{\sqrt{qr}} \left(1 + e^{-\sqrt{qr}}\right) + \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{qr}}\right), \quad q = \zeta\Lambda, \quad (34)$$

where δ is dimensionless parameter.

- ✳ Since integration constants C_1, C_2, C_3 are proportional to δ , and $C_4 = 0$, we reduced the number of parameters from 4 to 1. We have two free parameters (δ and ζ) which should be determined from measurements.
- ✳ The Taylor expansion of $\alpha(r)$ gives

$$\alpha(r) = -\frac{\delta\sqrt{\zeta\Lambda}}{6} r + o(\zeta r^2), \quad (35)$$

and we conclude that $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ✳ One such choice is: $C_1 = -\delta/\sqrt{q}$, $C_2 = 2\delta/q$, $C_3 = -\delta\sqrt{q}$; $C_4 = 0$.
- ✳ C_4 has to vanish, since we have exclude term with $e^{\sqrt{q}r}$ in (33).
- ✳ In this case solution for $\alpha(r)$, is

$$\alpha(r) = -\frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r}\right) + \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r}\right), \quad q = \zeta\Lambda, \quad (34)$$

where δ is dimensionless parameter.

- ✳ Since integration constants C_1, C_2, C_3 are proportional to δ , and $C_4 = 0$, we reduced the number of parameters from 4 to 1. We have two free parameters (δ and ζ) which should be determined from measurements.
- ✳ The Taylor expansion of $\alpha(r)$ gives

$$\alpha(r) = -\frac{\delta\sqrt{\zeta\Lambda}}{6} r + o(\zeta r^2), \quad (35)$$

and we conclude that $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ✳ One such choice is: $C_1 = -\delta/\sqrt{q}$, $C_2 = 2\delta/q$, $C_3 = -\delta\sqrt{q}$; $C_4 = 0$.
- ✳ C_4 has to vanish, since we have exclude term with $e^{\sqrt{q}r}$ in (33).
- ✳ In this case solution for $\alpha(r)$, is

$$\alpha(r) = -\frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r}\right) + \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r}\right), \quad q = \zeta\Lambda, \quad (34)$$

where δ is dimensionless parameter.

- ✳ Since integration constants C_1, C_2, C_3 are proportional to δ , and $C_4 = 0$, we reduced the number of parameters from 4 to 1. We have two free parameters (δ and ζ) which should be determined from measurements.
- ✳ The Taylor expansion of $\alpha(r)$ gives

$$\alpha(r) = -\frac{\delta\sqrt{\zeta\Lambda}}{6} r + o(\zeta r^2), \quad (35)$$

and we conclude that $\alpha(r) \rightarrow 0$ when $\zeta \rightarrow 0$.

- ④ According to (34), we get

$$A(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r} \right) - \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r} \right), \quad q = \zeta \Lambda, \quad (36)$$

where $\mu = 2GM/c^2$. It is clear that when $\zeta \rightarrow 0$, obtained expression (36) for $A(r)$ tends to $A_0(r)$, as necessary.

The Rotation Curves of Spiral Galaxies

- ④ The rotation curves of spiral galaxies play an important role, since we need them to determine the amount and distribution of dark matter comparing to visible matter.
- ④ We want examine whether the \sqrt{dS} gravitational model gives the possibility of describing the rotation curves of spiral galaxies.

- ⊗ According to (34), we get

$$A(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r} \right) - \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r} \right), \quad q = \zeta \Lambda, \quad (36)$$

where $\mu = 2GM/c^2$. It is clear that when $\zeta \rightarrow 0$, obtained expression (36) for $A(r)$ tends to $A_0(r)$, as necessary.

The Rotation Curves of Spiral Galaxies

- ⊗ The rotation curves of spiral galaxies play an important role, since we need them to determine the amount and distribution of dark matter comparing to visible matter.
- ⊗ We want examine whether the \sqrt{dS} gravitational model gives the possibility of describing the rotation curves of spiral galaxies.

- ✳ According to (34), we get

$$A(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r} \right) - \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r} \right), \quad q = \zeta \Lambda, \quad (36)$$

where $\mu = 2GM/c^2$. It is clear that when $\zeta \rightarrow 0$, obtained expression (36) for $A(r)$ tends to $A_0(r)$, as necessary.

The Rotation Curves of Spiral Galaxies

- ✳ The rotation curves of spiral galaxies play an important role, since we need them to determine the amount and distribution of dark matter comparing to visible matter.
- ✳ We want examine whether the \sqrt{dS} gravitational model gives the possibility of describing the rotation curves of spiral galaxies.

- ✳ According to (34), we get

$$A(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r} \right) - \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r} \right), \quad q = \zeta \Lambda, \quad (36)$$

where $\mu = 2GM/c^2$. It is clear that when $\zeta \rightarrow 0$, obtained expression (36) for $A(r)$ tends to $A_0(r)$, as necessary.

The Rotation Curves of Spiral Galaxies

- ✳ The rotation curves of spiral galaxies play an important role, since we need them to determine the amount and distribution of dark matter comparing to visible matter.
- ✳ We want examine whether the \sqrt{dS} gravitational model gives the possibility of describing the rotation curves of spiral galaxies.

- ✳ According to (34), we get

$$A(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r} \right) - \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r} \right), \quad q = \zeta \Lambda, \quad (36)$$

where $\mu = 2GM/c^2$. It is clear that when $\zeta \rightarrow 0$, obtained expression (36) for $A(r)$ tends to $A_0(r)$, as necessary.

The Rotation Curves of Spiral Galaxies

- ✳ The rotation curves of spiral galaxies play an important role, since we need them to determine the amount and distribution of dark matter comparing to visible matter.
- ✳ We want examine whether the \sqrt{dS} gravitational model gives the possibility of describing the rotation curves of spiral galaxies.

- ✳ According to (34), we get

$$A(r) = 1 - \frac{\mu}{r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{q}r} \left(1 + e^{-\sqrt{q}r} \right) - \frac{2\delta}{qr^2} \left(1 - e^{-\sqrt{q}r} \right), \quad q = \zeta \Lambda, \quad (36)$$

where $\mu = 2GM/c^2$. It is clear that when $\zeta \rightarrow 0$, obtained expression (36) for $A(r)$ tends to $A_0(r)$, as necessary.

The Rotation Curves of Spiral Galaxies

- ✳ The rotation curves of spiral galaxies play an important role, since we need them to determine the amount and distribution of dark matter comparing to visible matter.
- ✳ We want examine whether the \sqrt{dS} gravitational model gives the possibility of describing the rotation curves of spiral galaxies.

- ④ We start with $A(r)$ given by (36) and present the corresponding gravitational potential $\Phi(r)$, which is

$$\Phi(r) = \frac{c^2}{2} (1 - A(r)) = \frac{GM}{r} + \frac{\Lambda c^2 r^2}{6} + \frac{c^2}{2} a(r). \quad (37)$$

- ④ The corresponding gravitational acceleration for potential (37) is

$$\begin{aligned} a_g(r) &= -\frac{\partial \Phi}{\partial r} \\ &= \frac{GM}{r^2} - \frac{\Lambda c^2 r}{3} + \frac{\delta c^2}{\sqrt{qr^2}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \frac{\delta c^2}{r} \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}. \end{aligned}$$

- ④ Velocity of the rotation curve $\tilde{v}(r)$ is

$$\begin{aligned} \tilde{v}(r) &= \sqrt{a_g(r) r} \\ &= c \sqrt{\frac{GM}{c^2 r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{qr}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \delta \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}}. \end{aligned} \quad (38)$$

- ✳ We start with $A(r)$ given by (36) and present the corresponding gravitational potential $\Phi(r)$, which is

$$\Phi(r) = \frac{c^2}{2} (1 - A(r)) = \frac{GM}{r} + \frac{\Lambda c^2 r^2}{6} + \frac{c^2}{2} \alpha(r). \quad (37)$$

- ✳ The corresponding gravitational acceleration for potential (37) is

$$\begin{aligned} a_g(r) &= -\frac{\partial \Phi}{\partial r} \\ &= \frac{GM}{r^2} - \frac{\Lambda c^2 r}{3} + \frac{\delta c^2}{\sqrt{qr^2}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \frac{\delta c^2}{r} \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}. \end{aligned}$$

- ✳ Velocity of the rotation curve $\bar{v}(r)$ is

$$\begin{aligned} \bar{v}(r) &= \sqrt{a_g(r) r} \\ &= c \sqrt{\frac{GM}{c^2 r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{qr}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \delta \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}}. \end{aligned} \quad (38)$$

- ✳ We start with $A(r)$ given by (36) and present the corresponding gravitational potential $\Phi(r)$, which is

$$\Phi(r) = \frac{c^2}{2} (1 - A(r)) = \frac{GM}{r} + \frac{\Lambda c^2 r^2}{6} + \frac{c^2}{2} \alpha(r). \quad (37)$$

- ✳ The corresponding gravitational acceleration for potential (37) is

$$\begin{aligned} a_g(r) &= -\frac{\partial \Phi}{\partial r} \\ &= \frac{GM}{r^2} - \frac{\Lambda c^2 r}{3} + \frac{\delta c^2}{\sqrt{qr^2}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \frac{\delta c^2}{r} \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}. \end{aligned}$$

- ✳ Velocity of the rotation curve $\bar{v}(r)$ is

$$\begin{aligned} \bar{v}(r) &= \sqrt{a_g(r) r} \\ &= c \sqrt{\frac{GM}{c^2 r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{qr}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \delta \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}}. \end{aligned} \quad (38)$$

- ✳ We start with $A(r)$ given by (36) and present the corresponding gravitational potential $\Phi(r)$, which is

$$\Phi(r) = \frac{c^2}{2} (1 - A(r)) = \frac{GM}{r} + \frac{\Lambda c^2 r^2}{6} + \frac{c^2}{2} \alpha(r). \quad (37)$$

- ✳ The corresponding gravitational acceleration for potential (37) is

$$\begin{aligned} a_g(r) &= -\frac{\partial \Phi}{\partial r} \\ &= \frac{GM}{r^2} - \frac{\Lambda c^2 r}{3} + \frac{\delta c^2}{\sqrt{qr^2}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \frac{\delta c^2}{r} \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}. \end{aligned}$$

- ✳ Velocity of the rotation curve $\bar{v}(r)$ is

$$\begin{aligned} \bar{v}(r) &= \sqrt{a_g(r) r} \\ &= c \sqrt{\frac{GM}{c^2 r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{qr}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \delta \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}}. \end{aligned} \quad (38)$$

- ✳ We start with $A(r)$ given by (36) and present the corresponding gravitational potential $\Phi(r)$, which is

$$\Phi(r) = \frac{c^2}{2} (1 - A(r)) = \frac{GM}{r} + \frac{\Lambda c^2 r^2}{6} + \frac{c^2}{2} \alpha(r). \quad (37)$$

- ✳ The corresponding gravitational acceleration for potential (37) is

$$\begin{aligned} a_g(r) &= -\frac{\partial \Phi}{\partial r} \\ &= \frac{GM}{r^2} - \frac{\Lambda c^2 r}{3} + \frac{\delta c^2}{\sqrt{qr^2}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \frac{\delta c^2}{r} \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}. \end{aligned}$$

- ✳ Velocity of the rotation curve $\bar{v}(r)$ is

$$\begin{aligned} \bar{v}(r) &= \sqrt{a_g(r) r} \\ &= c \sqrt{\frac{GM}{c^2 r} - \frac{\Lambda r^2}{3} + \frac{\delta}{\sqrt{qr}} \left(\frac{2}{\sqrt{qr}} - \frac{1}{2} \right) - \delta \left(\frac{1}{2} + \frac{3}{2\sqrt{qr}} + \frac{2}{qr^2} \right) e^{-\sqrt{q}r}}. \end{aligned} \quad (38)$$

- ④ We checked the validity of the obtained formula for the circular velocity (38) on two cases: the Milky Way galaxy and the spiral galaxy M33.
- ④ The values of parameters δ and ζ in (38) are estimated by best fitting of measured data using the least-squares method.
- ④ **Milky Way case.** The Milky Way rotation curve data have taken from recent paper Jiao, Y.; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way rotation curve. *A&A* 2023, 678, A208. Measured data for distance r , velocity v and velocity error Δv are obtained by *Gaia* telescope and they are presented in Table 1. A pictorial comparison of measured and calculated velocities is presented in Figure 2.

- ✳ We checked the validity of the obtained formula for the circular velocity (38) on two cases: the Milky Way galaxy and the spiral galaxy M33.
- ✳ The values of parameters δ and ζ in (38) are estimated by best fitting of measured data using the least-squares method.
- ✳ **Milky Way case.** The Milky Way rotation curve data have taken from recent paper Jiao, Y.; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way rotation curve. *A&A* **2023**, *678*, A208. Measured data for distance r , velocity v and velocity error Δv are obtained by *Gaia* telescope and they are presented in Table 1. A pictorial comparison of measured and calculated velocities is presented in Figure 2.

- ✳ We checked the validity of the obtained formula for the circular velocity (38) on two cases: the Milky Way galaxy and the spiral galaxy M33.
- ✳ The values of parameters δ and ζ in (38) are estimated by best fitting of measured data using the least-squares method.
- ✳ **Milky Way case.** The Milky Way rotation curve data have taken from recent paper Jiao, Y.; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way rotation curve. *A&A* **2023**, *678*, A208. Measured data for distance r , velocity v and velocity error Δv are obtained by *Gaia* telescope and they are presented in Table 1. A pictorial comparison of measured and calculated velocities is presented in Figure 2.

- ✳ We checked the validity of the obtained formula for the circular velocity (38) on two cases: the Milky Way galaxy and the spiral galaxy M33.
- ✳ The values of parameters δ and ζ in (38) are estimated by best fitting of measured data using the least-squares method.
- ✳ **Milky Way case.** The Milky Way rotation curve data have taken from recent paper Jiao, Y; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way rotation curve. *A&A* 2023, 678, A208.
Measured data for distance r , velocity v and velocity error Δv are obtained by *Gaia* telescope and they are presented in Table 1. A pictorial comparison of measured and calculated velocities is presented in Figure 2.

- ✳ We checked the validity of the obtained formula for the circular velocity (38) on two cases: the Milky Way galaxy and the spiral galaxy M33.
- ✳ The values of parameters δ and ζ in (38) are estimated by best fitting of measured data using the least-squares method.
- ✳ **Milky Way case.** The Milky Way rotation curve data have taken from recent paper Jiao, Y.; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y., Detection of the Keplerian decline in the Milky Way rotation curve. *A&A* **2023**, *678*, A208. Measured data for distance r , velocity v and velocity error Δv are obtained by *Gaia* telescope and they are presented in Table 1. A pictorial comparison of measured and calculated velocities is presented in Figure 2.

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
9.5	221.75	3.17	217.36	1.98
10.5	223.32	3.02	220.19	1.40
11.5	220.72	3.47	221.93	0.55
12.5	222.92	3.19	222.72	0.09
13.5	224.16	3.48	222.66	0.67
14.5	221.60	4.20	221.85	0.11
15.5	218.79	4.75	220.37	0.72
16.5	216.38	4.96	218.28	0.88
17.5	213.48	6.13	215.63	1.01
18.5	209.17	4.42	212.47	1.58
19.5	206.25	4.63	208.83	1.25
20.5	202.54	4.40	204.77	1.10
21.5	197.56	4.62	200.29	1.38
22.5	197.00	3.81	195.42	0.80
23.5	191.62	12.95	190.17	0.75
24.5	187.12	8.06	184.57	1.36
25.5	181.44	19.58	178.62	1.55
26.5	175.68	24.68	172.32	1.91

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
9.5	221.75	3.17	217.36	1.98
10.5	223.32	3.02	220.19	1.40
11.5	220.72	3.47	221.93	0.55
12.5	222.92	3.19	222.72	0.09
13.5	224.16	3.48	222.66	0.67
14.5	221.60	4.20	221.85	0.11
15.5	218.79	4.75	220.37	0.72
16.5	216.38	4.96	218.28	0.88
17.5	213.48	6.13	215.63	1.01
18.5	209.17	4.42	212.47	1.58
19.5	206.25	4.63	208.83	1.25
20.5	202.54	4.40	204.77	1.10
21.5	197.56	4.62	200.29	1.38
22.5	197.00	3.81	195.42	0.80
23.5	191.62	12.95	190.17	0.75
24.5	187.12	8.06	184.57	1.36
25.5	181.44	19.58	178.62	1.55
26.5	175.68	24.68	172.32	1.91

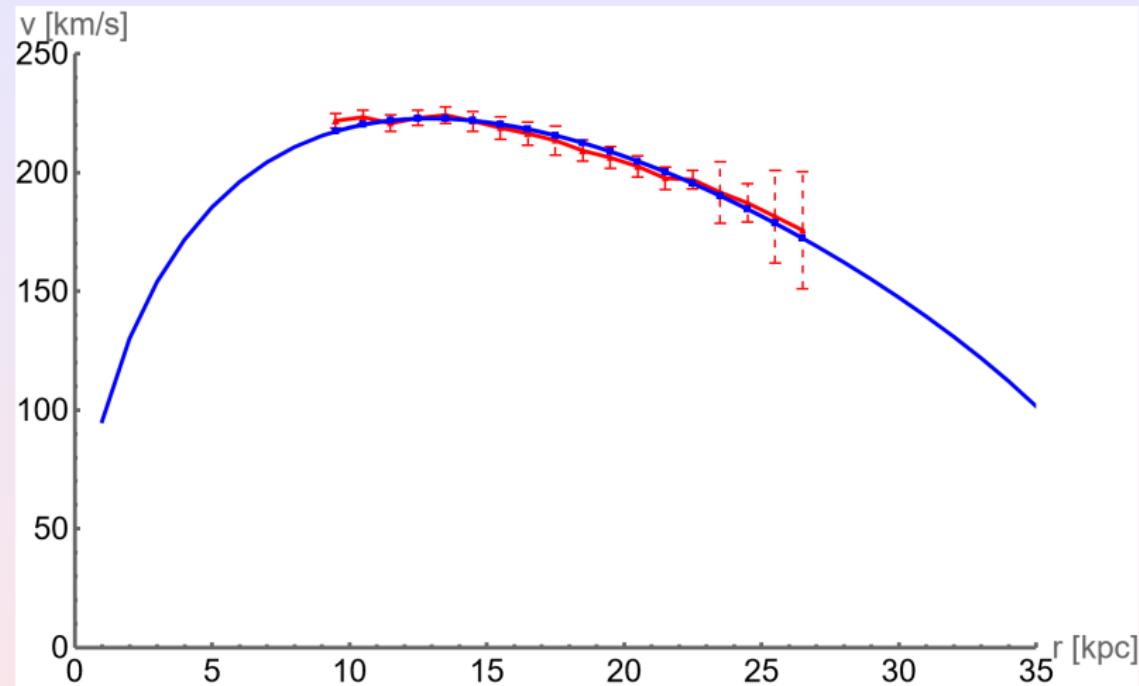


Figure: Rotation curve for the Milky Way galaxy. Red points are measured observational values from Table 1 and blue curve is computed $\bar{v}(r)$ by formula (38), where $\delta = 1.9 \times 10^{-5}$, $\zeta = 4.4 \times 10^{10}$, $\Lambda = 10^{-52} \text{m}^{-2}$ and $M = 4.28 \times 10^6 M_{\odot}$.

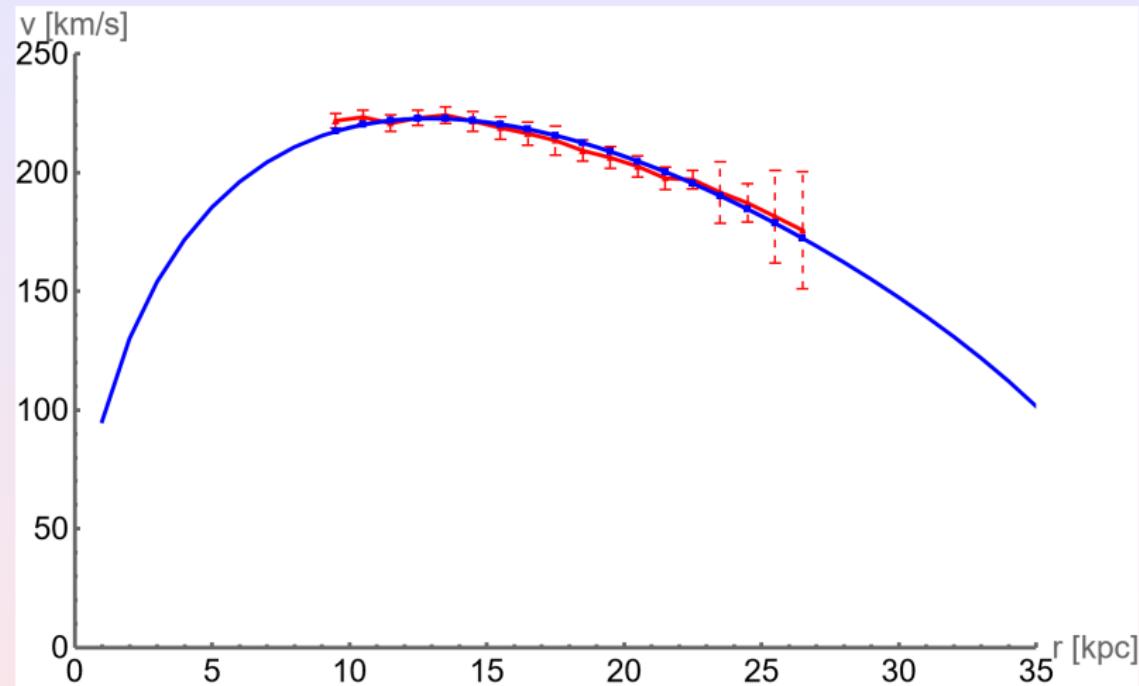


Figure: Rotation curve for the Milky Way galaxy. Red points are measured observational values from Table 1 and blue curve is computed $\bar{v}(r)$ by formula (38), where $\delta = 1.9 \times 10^{-5}$, $\zeta = 4.4 \times 10^{10}$, $\Lambda = 10^{-52} \text{m}^{-2}$ and $M = 4.28 \times 10^6 M_\odot$.

⊗ **Spiral galaxy M33 case.** We have used data for the galaxy Messier 33, based on observations obtained at the Dominion Radio Astrophysical Observatory and presented in Kam, S.Z.; Carignan, C.; Chemin, L.; Foster, T.; Elson, E.; Jarrett, T.H. HI kinematics and mass distribution of Messier 33, *AJ 2017, 154, 41*.

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
0.5	42.0	2.4	35.62	15.18
1.0	58.8	1.5	49.61	15.63
1.5	69.4	0.4	59.83	13.79
2.0	79.3	4.0	68.02	14.22
2.4	86.7	1.8	73.59	15.12
2.9	91.4	3.1	79.64	12.86
3.4	94.2	4.8	84.90	9.88
3.9	96.5	5.5	89.51	7.25
4.4	99.8	3.9	93.58	6.23
4.9	102.1	1.7	97.21	4.80
5.4	103.6	0.4	100.44	3.05
5.9	105.9	0.7	103.32	2.44
6.4	105.7	1.7	105.90	0.19

⑤ **Spiral galaxy M33 case.** We have used data for the galaxy Messier 33, based on observations obtained at the Dominion Radio Astrophysical Observatory and presented in Kam, S.Z.; Carignan, C.; Chemin, L.; Foster, T.; Elson, E.; Jarrett, T.H. HI kinematics and mass distribution of Messier 33, *AJ 2017, 154, 41*.

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
0.5	42.0	2.4	35.62	15.18
1.0	58.8	1.5	49.61	15.63
1.5	69.4	0.4	59.83	13.79
2.0	79.3	4.0	68.02	14.22
2.4	86.7	1.8	73.59	15.12
2.9	91.4	3.1	79.64	12.86
3.4	94.2	4.8	84.90	9.88
3.9	96.5	5.5	89.51	7.25
4.4	99.8	3.9	93.58	6.23
4.9	102.1	1.7	97.21	4.80
5.4	103.6	0.4	100.44	3.05
5.9	105.9	0.7	103.32	2.44
6.4	105.7	1.7	105.90	0.19

⑤ **Spiral galaxy M33 case.** We have used data for the galaxy Messier 33, based on observations obtained at the Dominion Radio Astrophysical Observatory and presented in Kam, S.Z.; Carignan, C.; Chemin, L.; Foster, T.; Elson, E.; Jarrett, T.H. HI kinematics and mass distribution of Messier 33, *AJ 2017, 154, 41*.

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
0.5	42.0	2.4	35.62	15.18
1.0	58.8	1.5	49.61	15.63
1.5	69.4	0.4	59.83	13.79
2.0	79.3	4.0	68.02	14.22
2.4	86.7	1.8	73.59	15.12
2.9	91.4	3.1	79.64	12.86
3.4	94.2	4.8	84.90	9.88
3.9	96.5	5.5	89.51	7.25
4.4	99.8	3.9	93.58	6.23
4.9	102.1	1.7	97.21	4.80
5.4	103.6	0.4	100.44	3.05
5.9	105.9	0.7	103.32	2.44
6.4	105.7	1.7	105.90	0.19

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
6.8	106.8	2.2	107.76	0.90
7.3	107.3	3.0	109.86	2.39
7.8	108.3	4.0	111.73	3.17
8.3	109.7	4.0	113.34	3.37
8.8	112.0	4.8	114.86	2.5
9.3	116.1	2.2	116.15	0.045
9.8	117.2	2.5	117.27	0.06
10.3	116.5	6.5	118.24	1.49
10.8	115.7	8.1	119.07	2.91
11.2	117.4	8.2	119.63	1.9
11.7	116.8	8.9	120.22	2.93
12.2	115.7	9.6	120.69	4.31
12.7	115.1	7.7	121.05	5.17
13.2	117.1	5.1	121.30	3.58
13.7	118.2	3.2	121.45	2.75
14.2	118.4	1.4	121.50	2.62
14.7	118.2	1.8	121.47	2.76
15.1	117.5	2.4	121.38	3.30
15.6	119.6	0.8	121.19	1.33

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
6.8	106.8	2.2	107.76	0.90
7.3	107.3	3.0	109.86	2.39
7.8	108.3	4.0	111.73	3.17
8.3	109.7	4.0	113.34	3.37
8.8	112.0	4.8	114.86	2.5
9.3	116.1	2.2	116.15	0.045
9.8	117.2	2.5	117.27	0.06
10.3	116.5	6.5	118.24	1.49
10.8	115.7	8.1	119.07	2.91
11.2	117.4	8.2	119.63	1.9
11.7	116.8	8.9	120.22	2.93
12.2	115.7	9.6	120.69	4.31
12.7	115.1	7.7	121.05	5.17
13.2	117.1	5.1	121.30	3.58
13.7	118.2	3.2	121.45	2.75
14.2	118.4	1.4	121.50	2.62
14.7	118.2	1.8	121.47	2.76
15.1	117.5	2.4	121.38	3.30
15.6	119.6	0.8	121.19	1.33

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error δv [%]
16.1	118.6	1.5	120.93	1.96
16.6	122.6	0.5	120.59	1.64
17.1	124.1	2.9	120.17	3.16
17.6	125.0	2.2	119.69	4.24
18.1	125.5	2.5	119.15	5.06
18.6	125.2	8.1	118.54	5.32
19.1	122.0	9.8	117.87	3.38
19.5	120.4	8.5	117.29	2.58
20.0	114.0	26.6	116.52	2.21
20.5	110.0	34.6	115.70	5.18
21.0	98.7	27.4	114.82	16.33
21.5	100.1	33.4	113.89	13.77
22.0	104.3	35.2	112.91	8.25
22.5	101.2	27.4	111.88	10.56
23.0	123.5	39.1	110.81	10.27
23.5	115.3	26.7	109.69	4.86

r [kpc]	v [km/s]	Δv [km/s]	\bar{v} [km/s]	relative error $\delta v[\%]$
16.1	118.6	1.5	120.93	1.96
16.6	122.6	0.5	120.59	1.64
17.1	124.1	2.9	120.17	3.16
17.6	125.0	2.2	119.69	4.24
18.1	125.5	2.5	119.15	5.06
18.6	125.2	8.1	118.54	5.32
19.1	122.0	9.8	117.87	3.38
19.5	120.4	8.5	117.29	2.58
20.0	114.0	26.6	116.52	2.21
20.5	110.0	34.6	115.70	5.18
21.0	98.7	27.4	114.82	16.33
21.5	100.1	33.4	113.89	13.77
22.0	104.3	35.2	112.91	8.25
22.5	101.2	27.4	111.88	10.56
23.0	123.5	39.1	110.81	10.27
23.5	115.3	26.7	109.69	4.86

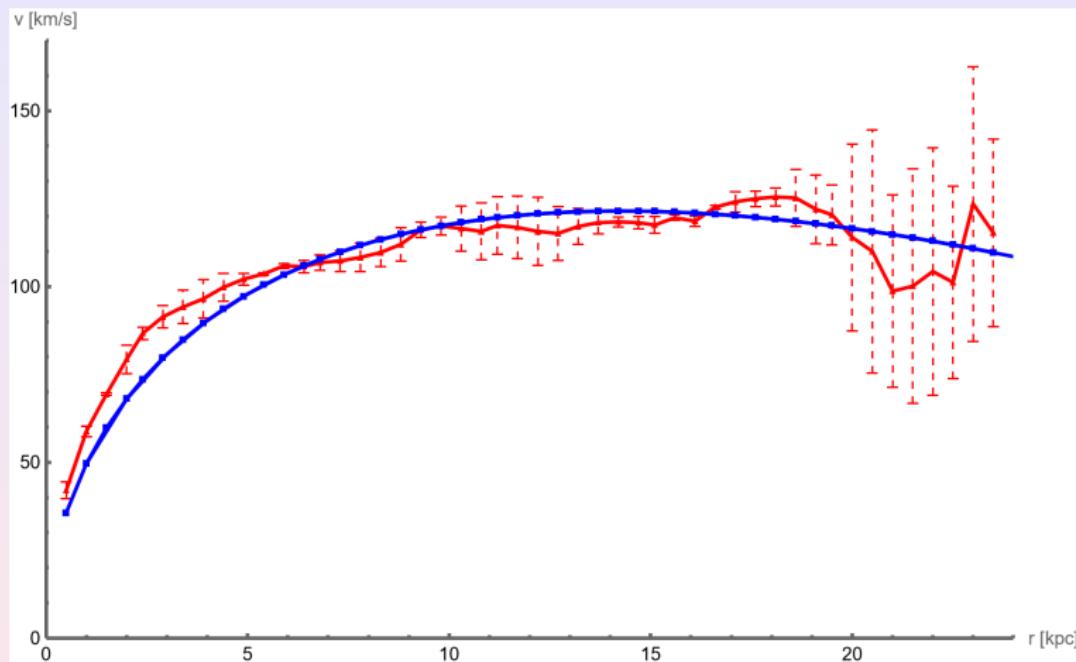


Figure: Rotation curve for spiral galaxy M33. Red points are measured observational values and blue line is computed $\bar{v}(r)$ by formula (38), where $\delta = 5.7 \times 10^{-6}$, $\zeta = 3.62 \times 10^{10}$, $\Lambda = 10^{-52} \text{m}^{-2}$ and $M = 1.5 \times 10^3 M_\odot$.

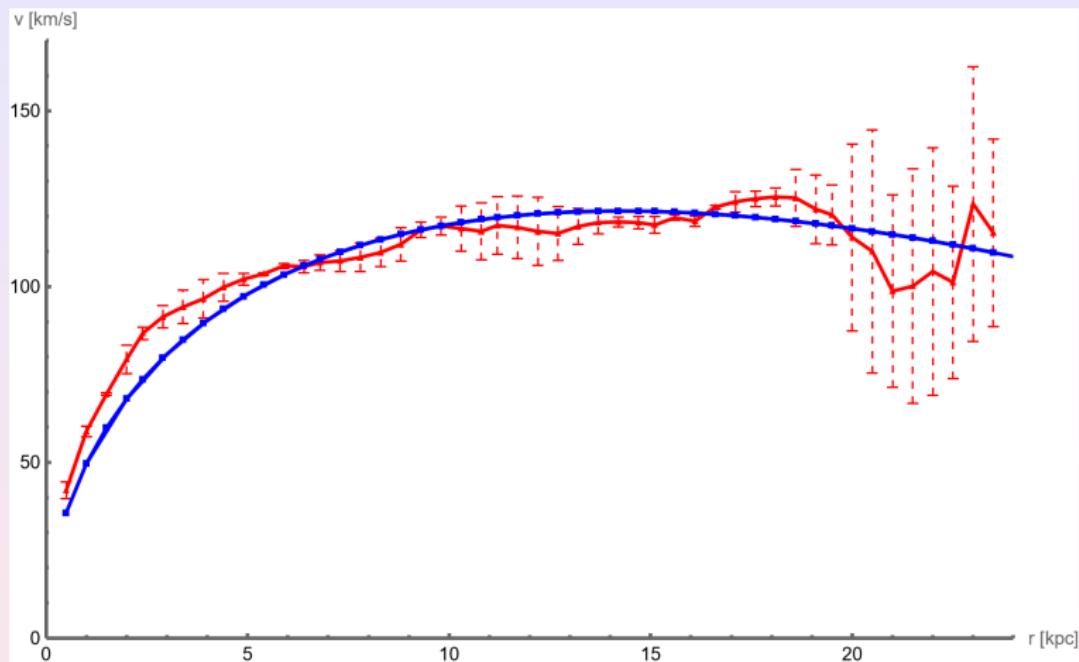


Figure: Rotation curve for spiral galaxy M33. Red points are measured observational values and blue line is computed $\bar{v}(r)$ by formula (38), where $\delta = 5.7 \times 10^{-6}$, $\zeta = 3.62 \times 10^{10}$, $\Lambda = 10^{-52} \text{m}^{-2}$ and $M = 1.5 \times 10^3 M_\odot$.

Concluding Remarks

- ⊗ In our previously investigations of this model, we obtained results on the evolution of the universe, where the effects that are usually attributed to dark energy and dark matter can be described by the nonlocality of the gravity model \sqrt{dS} .
- ⊗ Here, we found the Schwarzschild-de Sitter metric in the form of $A(r)$ (36), what corresponds to the weak gravity approximation and the linearization of nonlinear differential equation (26): a fourth-order linear differential equation for the Schwarzschild-de Sitter metric was obtained.
- ⊗ A general solution linearized equation (32) was found. A particular solution of $\alpha(r)$ was found (34) such that it satisfies the necessary condition that it tends to zero when the nonlocality vanishes.

Concluding Remarks

- ⊗ In our previously investigations of this model, we obtained results on the evolution of the universe, where the effects that are usually attributed to dark energy and dark matter can be described by the nonlocality of the gravity model \sqrt{dS} .
- ⊗ Here, we found the Schwarzschild-de Sitter metric in the form of $A(r)$ (36), what corresponds to the weak gravity approximation and the linearization of nonlinear differential equation (26): a fourth-order linear differential equation for the Schwarzschild-de Sitter metric was obtained.
- ⊗ A general solution linearized equation (32) was found. A particular solution of $\alpha(r)$ was found (34) such that it satisfies the necessary condition that it tends to zero when the nonlocality vanishes.

Concluding Remarks

- ⊗ In our previously investigations of this model, we obtained results on the evolution of the universe, where the effects that are usually attributed to dark energy and dark matter can be described by the nonlocality of the gravity model \sqrt{dS} .
- ⊗ Here, we found the Schwarzschild-de Sitter metric in the form of $A(r)$ (36), what corresponds to the weak gravity approximation and the linearization of nonlinear differential equation (26): a fourth-order linear differential equation for the Schwarzschild-de Sitter metric was obtained.
- ⊗ A general solution linearized equation (32) was found. A particular solution of $\alpha(r)$ was found (34) such that it satisfies the necessary condition that it tends to zero when the nonlocality vanishes.

Concluding Remarks

- ✳ In our previously investigations of this model, we obtained results on the evolution of the universe, where the effects that are usually attributed to dark energy and dark matter can be described by the nonlocality of the gravity model \sqrt{dS} .
- ✳ Here, we found the Schwarzschild-de Sitter metric in the form of $A(r)$ (36), what corresponds to the weak gravity approximation and the linearization of nonlinear differential equation (26): a fourth-order linear differential equation for the Schwarzschild-de Sitter metric was obtained.
- ✳ A general solution linearized equation (32) was found. A particular solution of $\alpha(r)$ was found (34) such that it satisfies the necessary condition that it tends to zero when the nonlocality vanishes.

Concluding Remarks

- ✳ In our previously investigations of this model, we obtained results on the evolution of the universe, where the effects that are usually attributed to dark energy and dark matter can be described by the nonlocality of the gravity model \sqrt{dS} .
- ✳ Here, we found the Schwarzschild-de Sitter metric in the form of $A(r)$ (36), what corresponds to the weak gravity approximation and the linearization of nonlinear differential equation (26): a fourth-order linear differential equation for the Schwarzschild-de Sitter metric was obtained.
- ✳ A general solution linearized equation (32) was found. A particular solution of $\alpha(r)$ was found (34) such that it satisfies the necessary condition that it tends to zero when the nonlocality vanishes.

Concluding Remarks

- ✳ In our previously investigations of this model, we obtained results on the evolution of the universe, where the effects that are usually attributed to dark energy and dark matter can be described by the nonlocality of the gravity model \sqrt{dS} .
- ✳ Here, we found the Schwarzschild-de Sitter metric in the form of $A(r)$ (36), what corresponds to the weak gravity approximation and the linearization of nonlinear differential equation (26): a fourth-order linear differential equation for the Schwarzschild-de Sitter metric was obtained.
- ✳ A general solution linearized equation (32) was found. A particular solution of $\alpha(r)$ was found (34) such that it satisfies the necessary condition that it tends to zero when the nonlocality vanishes.

- ④ The obtained results were tested on the rotation curves of the Milky Way and the spiral galaxy M33: the rotation curves were observed in the domain: 9.5 –26.5 kpc for the Milky Way galaxy and 0.5 –23.5 kpc for the M33 galaxy.
- ⑤ In the Lambda Cold Dark Matter model, it is assumed that dark matter plays an important role in the mentioned domains, but there is no dark matter in our nonlocal model.
- ⑥ The good agreement between observational measurements and theoretical predictions tells us that the role of dark matter can be played by the nonlocality in the presence of the cosmological constant Λ in the \sqrt{dS} gravity model.

- ✳ The obtained results were tested on the rotation curves of the Milky Way and the spiral galaxy M33: the rotation curves were observed in the domain: 9.5 –26.5 kpc for the Milky Way galaxy and 0.5 –23.5 kpc for the M33 galaxy.
- ✳ In the Lambda Cold Dark Matter model, it is assumed that dark matter plays an important role in the mentioned domains, but there is **no dark matter** in our nonlocal model.
- ✳ The good agreement between observational measurements and theoretical predictions tells us that **the role of dark matter** can be played by **the nonlocality** in the presence of the cosmological constant Λ in the \sqrt{dS} gravity model.

- ✳ The obtained results were tested on the rotation curves of the **Milky Way** and the spiral galaxy **M33**: the rotation curves were observed in the domain: **9.5 –26.5 kpc** for the **Milky Way** galaxy and **0.5 –23.5 kpc** for the **M33** galaxy.
- ✳ In the Lambda Cold Dark Matter model, it is assumed that dark matter plays an important role in the mentioned domains, but there is **no dark matter** in our nonlocal model.
- ✳ The good agreement between observational measurements and theoretical predictions tells us that **the role of dark matter** can be played by **the nonlocality** in the presence of the cosmological constant Λ in the \sqrt{dS} gravity model.

- ✳ The obtained results were tested on the rotation curves of the Milky Way and the spiral galaxy M33: the rotation curves were observed in the domain: 9.5 –26.5 kpc for the Milky Way galaxy and 0.5 –23.5 kpc for the M33 galaxy.
- ✳ In the Lambda Cold Dark Matter model, it is assumed that dark matter plays an important role in the mentioned domains, but there is no dark matter in our nonlocal model.
- ✳ The good agreement between observational measurements and theoretical predictions tells us that the role of dark matter can be played by the nonlocality in the presence of the cosmological constant Λ in the \sqrt{dS} gravity model.

- *) The obtained results were tested on the rotation curves of the Milky Way and the spiral galaxy M33: the rotation curves were observed in the domain: 9.5 –26.5 kpc for the Milky Way galaxy and 0.5 –23.5 kpc for the M33 galaxy.
- *) In the Lambda Cold Dark Matter model, it is assumed that dark matter plays an important role in the mentioned domains, but there is no dark matter in our nonlocal model.
- *) The good agreement between observational measurements and theoretical predictions tells us that the role of dark matter can be played by the nonlocality in the presence of the cosmological constant Λ in the \sqrt{dS} gravity model.

④ Let us start with the action

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4x + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \quad (39)$$

⑤ By variation of the previous action with respect to metric $g^{\mu\nu}$ we obtain

$$\frac{1}{16\pi G} G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0. \quad (40)$$

⑥ Variation over φ yields $\square \varphi = V'(\varphi)$. The corresponding EOM are:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad \square \varphi = V'(\varphi). \quad (41)$$

⑦ Now, we obtain

$$8\pi G \rho = \frac{1}{2} \dot{\varphi}^2 + V(\varphi), \quad 8\pi G p = \frac{1}{2} \dot{\varphi}^2 - V(\varphi). \quad (42)$$

Finally, we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \quad 4\pi G(p - \rho) = V(\varphi). \quad (43)$$

- Let us start with the action

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4x + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \quad (39)$$

- By variation of the previous action with respect to metric $g^{\mu\nu}$ we obtain

$$\frac{1}{16\pi G} G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0. \quad (40)$$

- Variation over φ yields $\square \varphi = V'(\varphi)$. The corresponding EOM are:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad \square \varphi = V'(\varphi). \quad (41)$$

- Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \quad 8\pi Gp = \frac{1}{2}\dot{\varphi}^2 - V(\varphi). \quad (42)$$

Finally, we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \quad 4\pi G(\rho - p) = V(\varphi). \quad (43)$$

- ✳ Let us start with the action

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4x + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \quad (39)$$

- ✳ By variation of the previous action with respect to metric $g^{\mu\nu}$ we obtain

$$\frac{1}{16\pi G} G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0. \quad (40)$$

- ✳ Variation over φ yields $\square \varphi = V'(\varphi)$. The corresponding EOM are:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad \square \varphi = V'(\varphi). \quad (41)$$

- ✳ Now, we obtain

$$8\pi G \rho = \frac{1}{2} \dot{\varphi}^2 + V(\varphi), \quad 8\pi G p = \frac{1}{2} \dot{\varphi}^2 - V(\varphi). \quad (42)$$

Finally, we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \quad 4\pi G(\rho - p) = V(\varphi). \quad (43)$$

- ✳ Let us start with the action

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4x + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \quad (39)$$

- ✳ By variation of the previous action with respect to metric $g^{\mu\nu}$ we obtain

$$\frac{1}{16\pi G} G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0. \quad (40)$$

- ✳ Variation over φ yields $\square \varphi = V'(\varphi)$. The corresponding EOM are:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad \square \varphi = V'(\varphi). \quad (41)$$

- ✳ Now, we obtain

$$8\pi G \rho = \frac{1}{2} \dot{\varphi}^2 + V(\varphi), \quad 8\pi G p = \frac{1}{2} \dot{\varphi}^2 - V(\varphi). \quad (42)$$

Finally, we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \quad 4\pi G(\rho - p) = V(\varphi). \quad (43)$$

- ✳ Let us start with the action

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4x + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \quad (39)$$

- ✳ By variation of the previous action with respect to metric $g^{\mu\nu}$ we obtain

$$\frac{1}{16\pi G} G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0. \quad (40)$$

- ✳ Variation over φ yields $\square \varphi = V'(\varphi)$. The corresponding EOM are:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad \square \varphi = V'(\varphi). \quad (41)$$

- ✳ Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \quad 8\pi Gp = \frac{1}{2}\dot{\varphi}^2 - V(\varphi). \quad (42)$$

Finally, we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \quad 4\pi G(\rho - p) = V(\varphi). \quad (43)$$

- Let us start with the action

$$S = \frac{1}{16\pi G} \int \sqrt{-g} R d^4x + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \quad (39)$$

- By variation of the previous action with respect to metric $g^{\mu\nu}$ we obtain

$$\frac{1}{16\pi G} G_{\mu\nu} + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0. \quad (40)$$

- Variation over φ yields $\square \varphi = V'(\varphi)$. The corresponding EOM are:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}, \quad \square \varphi = V'(\varphi). \quad (41)$$

- Now, we obtain

$$8\pi G\rho = \frac{1}{2}\dot{\varphi}^2 + V(\varphi), \quad 8\pi Gp = \frac{1}{2}\dot{\varphi}^2 - V(\varphi). \quad (42)$$

Finally, we have

$$8\pi G(\rho + p) = \dot{\varphi}^2 \quad 4\pi G(\rho - p) = V(\varphi). \quad (43)$$

- ⊗ In the case of cosmological solution for $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ⊗ Corresponding effective density and pressure for this solution are:

$$\rho = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad p = -\frac{\Lambda}{56\pi G}(\frac{3}{7}\Lambda t^2 - 1). \quad (44)$$

- ⊗ If we substitute the previous expressions into (43) we have

$$\dot{\varphi}^2 = \frac{4}{3}t^{-2} - \frac{2}{7}\Lambda, \\ \varphi = \pm \left(t \sqrt{\frac{4}{3t^2} - \frac{2\Lambda}{7}} + \frac{2t\sqrt{\frac{14}{t^2} - 3\Lambda}}{\sqrt{9\Lambda t^2 - 42}} \left(\sqrt{\frac{3\Lambda^2}{14}} - 1 \right) + C \right), \quad (45)$$

$$V(\varphi) = -\frac{2\Lambda}{7} + \frac{3\Lambda^2 t^2}{49} + \frac{2}{3t^2}.$$

- ⊗ In the case of cosmological solution for $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ⊗ Corresponding effective density and pressure for this solution are:

$$\rho = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad p = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right). \quad (44)$$

- ⊗ If we substitute the previous expressions into (43) we have

$$\begin{aligned} \dot{\varphi}^2 &= \frac{4}{3}t^{-2} - \frac{2}{7}\Lambda, \\ \varphi &= \pm \left(t \sqrt{\frac{4}{3t^2} - \frac{2\Lambda}{7}} + \frac{2t \sqrt{\frac{14}{t^2} - 3\Lambda} \left(\sqrt{\frac{3\Lambda t^2}{14}} - 1 \right)}{\sqrt{9\Lambda t^2 - 42}} + C \right), \quad (45) \\ V(\varphi) &= -\frac{2\Lambda}{7} + \frac{3\Lambda^2 t^2}{49} + \frac{2}{3t^2}. \end{aligned}$$

- ⊗ In the case of cosmological solution for $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ⊗ Corresponding effective density and pressure for this solution are:

$$\rho = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad p = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right). \quad (44)$$

- ⊗ If we substitute the previous expressions into (43) we have

$$\begin{aligned} \dot{\varphi}^2 &= \frac{4}{3}t^{-2} - \frac{2}{7}\Lambda, \\ \varphi &= \pm \left(t \sqrt{\frac{4}{3t^2} - \frac{2\Lambda}{7}} + \frac{2t \sqrt{\frac{14}{t^2} - 3\Lambda} \left(\sqrt{\frac{3\Lambda t^2}{14}} - 1 \right)}{\sqrt{9\Lambda t^2 - 42}} + C \right), \quad (45) \\ V(\varphi) &= -\frac{2\Lambda}{7} + \frac{3\Lambda^2 t^2}{49} + \frac{2}{3t^2}. \end{aligned}$$

- ✳ In the case of cosmological solution for $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ✳ Corresponding effective density and pressure for this solution are:

$$\rho = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad p = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right). \quad (44)$$

- ✳ If we substitute the previous expressions into (43) we have

$$\begin{aligned} \dot{\varphi}^2 &= \frac{4}{3}t^{-2} - \frac{2}{7}\Lambda, \\ \varphi &= \pm \left(t \sqrt{\frac{4}{3t^2} - \frac{2\Lambda}{7}} + \frac{2t \sqrt{\frac{14}{t^2} - 3\Lambda} \left(\sqrt{\frac{3\Lambda t^2}{14}} - 1 \right)}{\sqrt{9\Lambda t^2 - 42}} + C \right), \quad (45) \\ V(\varphi) &= -\frac{2\Lambda}{7} + \frac{3\Lambda^2 t^2}{49} + \frac{2}{3t^2}. \end{aligned}$$

- ✳ In the case of cosmological solution for $a(t) = A t^{\frac{2}{3}} e^{\frac{\Lambda}{14} t^2}$, $k = 0$
- ✳ Corresponding effective density and pressure for this solution are:

$$\rho = \frac{2t^{-2} + \frac{9}{98}\Lambda^2 t^2 - \frac{9}{14}\Lambda}{12\pi G}, \quad p = -\frac{\Lambda}{56\pi G} \left(\frac{3}{7}\Lambda t^2 - 1 \right). \quad (44)$$

- ✳ If we substitute the previous expressions into (43) we have

$$\dot{\varphi}^2 = \frac{4}{3}t^{-2} - \frac{2}{7}\Lambda, \\ \varphi = \pm \left(t \sqrt{\frac{4}{3t^2} - \frac{2\Lambda}{7}} + \frac{2t \sqrt{\frac{14}{t^2} - 3\Lambda} \left(\sqrt{\frac{3\Lambda t^2}{14}} - 1 \right)}{\sqrt{9\Lambda t^2 - 42}} + C \right), \quad (45)$$

$$V(\varphi) = -\frac{2\Lambda}{7} + \frac{3\Lambda^2 t^2}{49} + \frac{2}{3t^2}.$$

- ⊕ But we can start with another action (instead of (39)), for example

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \\ + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \quad (46)$$

- ⊕ By variation of the previous action with respect to metric $g^{\mu\nu}$, and then using $\square \sqrt{R - 2\Lambda} = q \sqrt{R - 2\Lambda}$ we obtain

$$\frac{1}{16\pi G} \left((G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu} (\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) \right) \\ + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0, \quad (47)$$

... to be continued ...

- But we can start with another action (instead of (39)), for example

$$\begin{aligned} S = & \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \\ & + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \end{aligned} \quad (46)$$

- By variation of the previous action with respect to metric $g^{\mu\nu}$, and then using $\square \sqrt{R - 2\Lambda} = q \sqrt{R - 2\Lambda}$ we obtain

$$\begin{aligned} & \frac{1}{16\pi G} \left((G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu} (\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) \right) \\ & + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0, \end{aligned} \quad (47)$$

... to be continued ...

- ✳ But we can start with another action (instead of (39)), for example

$$\begin{aligned}
 S = & \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \\
 & + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \tag{46}
 \end{aligned}$$

- ✳ By variation of the previous action with respect to metric $g^{\mu\nu}$, and then using $\square \sqrt{R - 2\Lambda} = q \sqrt{R - 2\Lambda}$ we obtain

$$\begin{aligned}
 & \frac{1}{16\pi G} \left((G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu} (\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) \right) \\
 & + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0, \tag{47}
 \end{aligned}$$

... to be continued ...

- ✳ But we can start with another action (instead of (39)), for example

$$\begin{aligned}
 S = & \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \\
 & + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \tag{46}
 \end{aligned}$$

- ✳ By variation of the previous action with respect to metric $g^{\mu\nu}$, and then using $\square \sqrt{R - 2\Lambda} = q \sqrt{R - 2\Lambda}$ we obtain

$$\begin{aligned}
 & \frac{1}{16\pi G} \left((G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) \right) \\
 & + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0, \tag{47}
 \end{aligned}$$

... to be continued ...

- ✳ But we can start with another action (instead of (39)), for example

$$\begin{aligned}
 S = & \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda + \sqrt{R - 2\Lambda} \mathcal{F}(\square) \sqrt{R - 2\Lambda}) \\
 & + \frac{1}{8\pi G} \int \sqrt{-g} \left(-\frac{1}{2} \nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) \right) d^4x. \tag{46}
 \end{aligned}$$

- ✳ By variation of the previous action with respect to metric $g^{\mu\nu}$, and then using $\square \sqrt{R - 2\Lambda} = q \sqrt{R - 2\Lambda}$ we obtain

$$\begin{aligned}
 & \frac{1}{16\pi G} \left((G_{\mu\nu} + \Lambda g_{\mu\nu}) (1 + \mathcal{F}(q)) + \frac{1}{2} \mathcal{F}'(q) S_{\mu\nu}(\sqrt{R - 2\Lambda}, \sqrt{R - 2\Lambda}) \right) \\
 & + \frac{1}{8\pi G} \left(\frac{1}{4} g_{\mu\nu} \nabla^\rho \varphi \nabla_\rho \varphi + \frac{1}{2} g_{\mu\nu} V(\varphi) - \frac{1}{2} \nabla_\mu \varphi \nabla_\nu \varphi \right) = 0, \tag{47}
 \end{aligned}$$

... to be continued ...

- I. Dimitrijevic, B. Dragovich, Z. Rakic, J. Stankovic, *Nonlocal de Sitter \sqrt{dS} Gravity Model and Its Applications*, Russian Journal of Mathematical Physics, 2025 (1), 11-27.
- I. Dimitrijevic, B. Dragovich, Z. Rakic, J. Stankovic, *Nonlocal de Sitter gravity and its exact cosmological solutions*, Journal of High Energy Physics 2022 (12), 1-28.
- I. Dimitrijevic, B. Dragovich, A. S. Koshelev, Z. Rakic, J. Stankovic, *Cosmological solutions of a nonlocal square root gravity*, Phys. Lett. B 797 (2019) 134848, arXiv:1906.07560 [gr-qc].
- I. Dimitrijevic, B. Dragovich, Z. Rakic, and J. Stankovic, *The Schwarzschild-de Sitter Metric of Nonlocal \sqrt{dS} Gravity*, Symmetry (2024) Volume 16 (5), 544, doi.org/10.3390/sym16050544
- I. Dimitrijevic, B. Dragovich, Z. Rakic, J. Stankovic, *On the Schwarzschild-de Sitter metric of nonlocal de Sitter gravity*, Filomat, 2023, Vol. 37 (25), 8641-8650.
- S. Nojiri, S.D. Odintsov, V. K. Oikonomou, *Modified Gravity Theories on a Nutshell: inflation, bounce, and late-time evolution*, Phys. Rep. **692** (2017), 1–104.
- T. Biswas, T. Koivisto, A. Mazumdar, *Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity*, JCAP **1011** (2010) 008 [arXiv:1005.0590v2 [hep-th]].
- A. S. Koshelev, S. Yu. Vernov, *On bouncing solutions in non-local gravity*, Phys. Part. Nuclei **43**, 666–668 (2012) [arXiv:1202.1289v1 [hep-th]].
- I. Dimitrijevic, B. Dragovich, A. S. Koshelev, Z. Rakic, J. Stankovic, *Some cosmological solutions of a new nonlocal gravity model*, Symmetry 12, 917 (2020), arXiv:2006.16041 [gr-qc].
- I. Dimitrijevic, B. Dragovich, Z. Rakic, and J. Stankovic, *New Cosmological Solutions of a Nonlocal Gravity Model*, Symmetry (2022) Volume 14 (1), 3.

**THANK YOU FOR
YOUR ATTENTION !!!**

Non-trivial Christoffel symbols of Friedman–Robertson–Walker metric

$$\Gamma_{01}^1 = \frac{\dot{a}}{a}$$

$$\Gamma_{02}^2 = \frac{\dot{a}}{a}$$

$$\Gamma_{03}^3 = \frac{\dot{a}}{a}$$

$$\Gamma_{11}^0 = \frac{a \dot{a}}{1 - kr^2}$$

$$\Gamma_{11}^1 = \frac{kr}{1 - kr^2}$$

$$\Gamma_{12}^2 = \frac{1}{r}$$

$$\Gamma_{13}^3 = \frac{1}{r}$$

$$\Gamma_{22}^0 = r^2 a \dot{a}$$

$$\Gamma_{22}^1 = r(kr^2 - 1)$$

$$\Gamma_{23}^3 = \cot \theta$$

$$\Gamma_{33}^0 = r^2 a \dot{a} \sin^2 \theta$$

$$\Gamma_{33}^1 = r(kr^2 - 1) \sin^2 \theta$$

$$\Gamma_{33}^2 = -\sin \theta \cos \theta$$

Non-trivial Christoffel symbols of Friedman – Robertson – Walker metric

$$\Gamma_{01}^1 = \frac{\dot{a}}{a}$$

$$\Gamma_{02}^2 = \frac{\dot{a}}{a}$$

$$\Gamma_{03}^3 = \frac{\dot{a}}{a}$$

$$\Gamma_{11}^0 = \frac{a \dot{a}}{1 - kr^2}$$

$$\Gamma_{11}^1 = \frac{kr}{1 - kr^2}$$

$$\Gamma_{12}^2 = \frac{1}{r}$$

$$\Gamma_{13}^3 = \frac{1}{r}$$

$$\Gamma_{22}^0 = r^2 a \dot{a}$$

$$\Gamma_{22}^1 = r(kr^2 - 1)$$

$$\Gamma_{23}^3 = \cot \theta$$

$$\Gamma_{33}^0 = r^2 a \dot{a} \sin^2 \theta$$

$$\Gamma_{33}^1 = r(kr^2 - 1) \sin^2 \theta$$

$$\Gamma_{33}^2 = -\sin \theta \cos \theta$$

Non-trivial Christoffel symbols of Friedman–Robertson–Walker metric

$$\Gamma_{01}^1 = \frac{\dot{a}}{a}$$

$$\Gamma_{02}^2 = \frac{\dot{a}}{a}$$

$$\Gamma_{03}^3 = \frac{\dot{a}}{a}$$

$$\Gamma_{11}^0 = \frac{a \dot{a}}{1 - k r^2}$$

$$\Gamma_{11}^1 = \frac{k r}{1 - k r^2}$$

$$\Gamma_{12}^2 = \frac{1}{r}$$

$$\Gamma_{13}^3 = \frac{1}{r}$$

$$\Gamma_{22}^0 = r^2 a \dot{a}$$

$$\Gamma_{22}^1 = r (k r^2 - 1)$$

$$\Gamma_{23}^3 = \cot \theta$$

$$\Gamma_{33}^0 = r^2 a \dot{a} \sin^2 \theta$$

$$\Gamma_{33}^1 = r (k r^2 - 1) \sin^2 \theta$$

$$\Gamma_{33}^2 = -\sin \theta \cos \theta$$

Non-trivial components of curvature tensor

$$R_{0110} = \frac{a \ddot{a}}{1 - k r^2} \quad R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0220} = r^2 a \ddot{a} \quad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0330} = r^2 a \ddot{a} \sin^2 \theta \quad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3\ddot{a}}{a} & 0 & 0 & 0 \\ 0 & u g_{11} & 0 & 0 \\ 0 & 0 & u g_{22} & 0 \\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \quad u = \frac{a \ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

Non-trivial components of curvature tensor

$$R_{0110} = \frac{a \ddot{a}}{1 - k r^2}$$

$$R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0220} = r^2 a \ddot{a}$$

$$R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0330} = r^2 a \ddot{a} \sin^2 \theta$$

$$R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3\ddot{a}}{a} & 0 & 0 & 0 \\ 0 & u g_{11} & 0 & 0 \\ 0 & 0 & u g_{22} & 0 \\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \quad u = \frac{a \ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

Non-trivial components of curvature tensor

$$R_{0110} = \frac{a \ddot{a}}{1 - k r^2} \quad R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0220} = r^2 a \ddot{a} \quad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0330} = r^2 a \ddot{a} \sin^2 \theta \quad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3\ddot{a}}{a} & 0 & 0 & 0 \\ 0 & u g_{11} & 0 & 0 \\ 0 & 0 & u g_{22} & 0 \\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \quad u = \frac{a \ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

Non-trivial components of curvature tensor

$$R_{0110} = \frac{a \ddot{a}}{1 - k r^2} \quad R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0220} = r^2 a \ddot{a} \quad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0330} = r^2 a \ddot{a} \sin^2 \theta \quad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3\ddot{a}}{a} & 0 & 0 & 0 \\ 0 & u g_{11} & 0 & 0 \\ 0 & 0 & u g_{22} & 0 \\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \quad u = \frac{a \ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

Non-trivial components of curvature tensor

$$R_{0110} = \frac{a \ddot{a}}{1 - k r^2} \quad R_{1221} = -\frac{r^2 a^2 (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0220} = r^2 a \ddot{a} \quad R_{1331} = -\frac{r^2 a^2 \sin^2 \theta (\dot{a}^2 + k)}{1 - k r^2}$$

$$R_{0330} = r^2 a \ddot{a} \sin^2 \theta \quad R_{2332} = -r^4 a^2 \sin^2 \theta (\dot{a}^2 + k)$$

Ricci tensor

$$R_{\mu\nu} = \begin{pmatrix} -\frac{3\ddot{a}}{a} & 0 & 0 & 0 \\ 0 & u g_{11} & 0 & 0 \\ 0 & 0 & u g_{22} & 0 \\ 0 & 0 & 0 & u g_{33} \end{pmatrix}, \quad u = \frac{a \ddot{a} + 2(\dot{a}^2 + k)}{a^2}$$

Scalar curvature

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2 + k)}{a^2} & 0 & 0 & 0 \\ 0 & -\nu g_{11} & 0 & 0 \\ 0 & 0 & -\nu g_{22} & 0 \\ 0 & 0 & 0 & -\nu g_{33} \end{pmatrix}, \quad \nu = \frac{2a\ddot{a} + \dot{a}^2 + k}{a^2}$$

▶ FRW metric

▶ EOM

▶ EOM-2

Scalar curvature

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2 + k)}{a^2} & 0 & 0 & 0 \\ 0 & -\nu g_{11} & 0 & 0 \\ 0 & 0 & -\nu g_{22} & 0 \\ 0 & 0 & 0 & -\nu g_{33} \end{pmatrix}, \quad \nu = \frac{2a\ddot{a} + \dot{a}^2 + k}{a^2}$$

▶ FRW metric

▶ EOM

▶ EOM-2

Scalar curvature

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2 + k)}{a^2} & 0 & 0 & 0 \\ 0 & -\nu g_{11} & 0 & 0 \\ 0 & 0 & -\nu g_{22} & 0 \\ 0 & 0 & 0 & -\nu g_{33} \end{pmatrix}, \quad \nu = \frac{2a\ddot{a} + \dot{a}^2 + k}{a^2}$$

▶ FRW metric

▶ EOM

▶ EOM-2

Scalar curvature

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2 + k)}{a^2} & 0 & 0 & 0 \\ 0 & -\nu g_{11} & 0 & 0 \\ 0 & 0 & -\nu g_{22} & 0 \\ 0 & 0 & 0 & -\nu g_{33} \end{pmatrix}, \quad \nu = \frac{2a\ddot{a} + \dot{a}^2 + k}{a^2}$$

▶ FRW metric

▶ EOM

▶ EOM-2

Scalar curvature

$$R = \frac{6(a\ddot{a} + \dot{a}^2 + k)}{a^2}$$

Einstein tensor

$$G_{\mu\nu} = \begin{pmatrix} \frac{3(\dot{a}^2 + k)}{a^2} & 0 & 0 & 0 \\ 0 & -\nu g_{11} & 0 & 0 \\ 0 & 0 & -\nu g_{22} & 0 \\ 0 & 0 & 0 & -\nu g_{33} \end{pmatrix}, \quad \nu = \frac{2a\ddot{a} + \dot{a}^2 + k}{a^2}$$

▶ FRW metric

▶ EOM

▶ EOM-2

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

$$\Gamma_{01}^0 = \frac{1}{2} \frac{A'}{A},$$

$$\Gamma_{00}^1 = \frac{1}{2} \frac{A'}{B},$$

$$\Gamma_{11}^1 = \frac{1}{2} \frac{B'}{B},$$

$$\Gamma_{22}^1 = -\frac{r}{B},$$

$$\Gamma_{33}^1 = -\frac{r \sin^2 \theta}{B},$$

$$\Gamma_{12}^2 = \frac{1}{r},$$

$$\Gamma_{33}^2 = -\sin \theta \cos \theta,$$

$$\Gamma_{13}^3 = \frac{1}{r},$$

$$\Gamma_{23}^3 = \cot \theta.$$

Non-trivial components of curvature tensor

$$R_{0101} = \frac{A}{4} \left(- \left(\frac{A'}{A} \right)^2 - \frac{A'}{A} \frac{B'}{B} + 2 \frac{A''}{A} \right),$$

$$R_{0202} = \frac{r}{2} \frac{A'}{B},$$

$$R_{0303} = \frac{r}{2} \frac{A'}{B} \sin^2 \theta,$$

$$R_{1212} = \frac{r}{2} \frac{B'}{B},$$

$$R_{1313} = \frac{r}{2} \frac{B'}{B} \sin^2 \theta,$$

$$R_{2323} = r^2 \frac{B-1}{B} \sin^2 \theta.$$

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

$$\Gamma_{01}^0 = \frac{1}{2} \frac{A'}{A},$$

$$\Gamma_{00}^1 = \frac{1}{2} \frac{A'}{B},$$

$$\Gamma_{11}^1 = \frac{1}{2} \frac{B'}{B},$$

$$\Gamma_{22}^1 = -\frac{r}{B},$$

$$\Gamma_{33}^1 = -\frac{r \sin^2 \theta}{B},$$

$$\Gamma_{12}^2 = \frac{1}{r},$$

$$\Gamma_{33}^2 = -\sin \theta \cos \theta,$$

$$\Gamma_{13}^3 = \frac{1}{r},$$

$$\Gamma_{23}^3 = \cot \theta.$$

Non-trivial components of curvature tensor

$$R_{0101} = \frac{A}{4} \left(- \left(\frac{A'}{A} \right)^2 - \frac{A'}{A} \frac{B'}{B} + 2 \frac{A''}{A} \right),$$

$$R_{0202} = \frac{r}{2} \frac{A'}{B},$$

$$R_{0303} = \frac{r}{2} \frac{A'}{B} \sin^2 \theta,$$

$$R_{1212} = \frac{r}{2} \frac{B'}{B},$$

$$R_{1313} = \frac{r}{2} \frac{B'}{B} \sin^2 \theta,$$

$$R_{2323} = r^2 \frac{B-1}{B} \sin^2 \theta.$$

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

$$\Gamma_{01}^0 = \frac{1}{2} \frac{A'}{A},$$

$$\Gamma_{00}^1 = \frac{1}{2} \frac{A'}{B},$$

$$\Gamma_{11}^1 = \frac{1}{2} \frac{B'}{B},$$

$$\Gamma_{22}^1 = -\frac{r}{B},$$

$$\Gamma_{33}^1 = -\frac{r \sin^2 \theta}{B},$$

$$\Gamma_{12}^2 = \frac{1}{r},$$

$$\Gamma_{33}^2 = -\sin \theta \cos \theta,$$

$$\Gamma_{13}^3 = \frac{1}{r},$$

$$\Gamma_{23}^3 = \cot \theta.$$

Non-trivial components of curvature tensor

$$R_{0101} = \frac{A}{4} \left(-\left(\frac{A'}{A} \right)^2 - \frac{A'}{A} \frac{B'}{B} + 2 \frac{A''}{A} \right),$$

$$R_{0202} = \frac{r}{2} \frac{A'}{B},$$

$$R_{0303} = \frac{r}{2} \frac{A'}{B} \sin^2 \theta,$$

$$R_{1212} = \frac{r}{2} \frac{B'}{B},$$

$$R_{1313} = \frac{r}{2} \frac{B'}{B} \sin^2 \theta,$$

$$R_{2323} = r^2 \frac{B-1}{B} \sin^2 \theta.$$

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

$$\Gamma_{01}^0 = \frac{1}{2} \frac{A'}{A},$$

$$\Gamma_{00}^1 = \frac{1}{2} \frac{A'}{B},$$

$$\Gamma_{11}^1 = \frac{1}{2} \frac{B'}{B},$$

$$\Gamma_{22}^1 = -\frac{r}{B},$$

$$\Gamma_{33}^1 = -\frac{r \sin^2 \theta}{B},$$

$$\Gamma_{12}^2 = \frac{1}{r},$$

$$\Gamma_{33}^2 = -\sin \theta \cos \theta,$$

$$\Gamma_{13}^3 = \frac{1}{r},$$

$$\Gamma_{23}^3 = \cot \theta.$$

Non-trivial components of curvature tensor

$$R_{0101} = \frac{A}{4} \left(- \left(\frac{A'}{A} \right)^2 - \frac{A'}{A} \frac{B'}{B} + 2 \frac{A''}{A} \right),$$

$$R_{0202} = \frac{r}{2} \frac{A'}{B},$$

$$R_{0303} = \frac{r}{2} \frac{A'}{B} \sin^2 \theta,$$

$$R_{1212} = \frac{r}{2} \frac{B'}{B},$$

$$R_{1313} = \frac{r}{2} \frac{B'}{B} \sin^2 \theta,$$

$$R_{2323} = r^2 \frac{B-1}{B} \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{A'^2}{4AB} + \frac{A'}{rB}, \quad R_{11} = -\frac{A''}{2A} + \frac{A'B'}{4A(r)B(r)} + \frac{A'^2}{4A^2} + \frac{B'}{r},$$

$$R_{22} = -\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1, \quad R_{33} = \left(-\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1 \right) \sin^2 \theta.$$

The scalar curvature is

$$R = -\frac{A''}{AB} + \frac{A'B'}{2AB^2} + \frac{A'^2}{2A^2B} - \frac{2A'}{rAB} + \frac{2B'}{rB^2} - \frac{2}{r^2B} + \frac{2}{r^2}.$$

The Einstein tensor is diagonal and its components are

$$G_{00} = \frac{AB'}{rB^2} - \frac{A}{r^2B} + \frac{A}{r^2}, \quad G_{22} = \frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2},$$

$$G_{11} = \frac{A'}{rA} - \frac{B}{r^2} + \frac{1}{r^2}, \quad G_{33} = \left(\frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2} \right) \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{A'^2}{4AB} + \frac{A'}{rB}, \quad R_{11} = -\frac{A''}{2A} + \frac{A'B'}{4A(r)B(r)} + \frac{A'^2}{4A^2} + \frac{B'}{r},$$

$$R_{22} = -\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1, \quad R_{33} = \left(-\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1 \right) \sin^2 \theta.$$

The scalar curvature is

$$R = -\frac{A''}{AB} + \frac{A'B'}{2AB^2} + \frac{A'^2}{2A^2B} - \frac{2A'}{rAB} + \frac{2B'}{rB^2} - \frac{2}{r^2B} + \frac{2}{r^2}.$$

The Einstein tensor is diagonal and its components are

$$G_{00} = \frac{AB'}{rB^2} - \frac{A}{r^2B} + \frac{A}{r^2}, \quad G_{22} = \frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2},$$

$$G_{11} = \frac{A'}{rA} - \frac{B}{r^2} + \frac{1}{r^2}, \quad G_{33} = \left(\frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2} \right) \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{A'^2}{4AB} + \frac{A'}{rB}, \quad R_{11} = -\frac{A''}{2A} + \frac{A'B'}{4A(r)B(r)} + \frac{A'^2}{4A^2} + \frac{B'}{r},$$

$$R_{22} = -\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1, \quad R_{33} = \left(-\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1 \right) \sin^2 \theta.$$

The scalar curvature is

$$R = -\frac{A''}{AB} + \frac{A'B'}{2AB^2} + \frac{A'^2}{2A^2B} - \frac{2A'}{rAB} + \frac{2B'}{rB^2} - \frac{2}{r^2B} + \frac{2}{r^2}.$$

The Einstein tensor is diagonal and its components are

$$G_{00} = \frac{AB'}{rB^2} - \frac{A}{r^2B} + \frac{A}{r^2}, \quad G_{22} = \frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2},$$

$$G_{11} = \frac{A'}{rA} - \frac{B}{r^2} + \frac{1}{r^2}, \quad G_{33} = \left(\frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2} \right) \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{A'^2}{4AB} + \frac{A'}{rB}, \quad R_{11} = -\frac{A''}{2A} + \frac{A'B'}{4A(r)B(r)} + \frac{A'^2}{4A^2} + \frac{B'}{r},$$

$$R_{22} = -\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1, \quad R_{33} = \left(-\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1 \right) \sin^2 \theta.$$

The scalar curvature is

$$R = -\frac{A''}{AB} + \frac{A'B'}{2AB^2} + \frac{A'^2}{2A^2B} - \frac{2A'}{rAB} + \frac{2B'}{rB^2} - \frac{2}{r^2B} + \frac{2}{r^2}.$$

The Einstein tensor is diagonal and its components are

$$G_{00} = \frac{AB'}{rB^2} - \frac{A}{r^2B} + \frac{A}{r^2}, \quad G_{22} = \frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2},$$

$$G_{11} = \frac{A'}{rA} - \frac{B}{r^2} + \frac{1}{r^2}, \quad G_{33} = \left(\frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2} \right) \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{A'^2}{4AB} + \frac{A'}{rB}, \quad R_{11} = -\frac{A''}{2A} + \frac{A'B'}{4A(r)B(r)} + \frac{A'^2}{4A^2} + \frac{B'}{r},$$

$$R_{22} = -\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1, \quad R_{33} = \left(-\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1 \right) \sin^2 \theta.$$

The scalar curvature is

$$R = -\frac{A''}{AB} + \frac{A'B'}{2AB^2} + \frac{A'^2}{2A^2B} - \frac{2A'}{rAB} + \frac{2B'}{rB^2} - \frac{2}{r^2B} + \frac{2}{r^2}.$$

The Einstein tensor is diagonal and its components are

$$G_{00} = \frac{AB'}{rB^2} - \frac{A}{r^2B} + \frac{A}{r^2}, \quad G_{22} = \frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2},$$

$$G_{11} = \frac{A'}{rA} - \frac{B}{r^2} + \frac{1}{r^2}, \quad G_{33} = \left(\frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2} \right) \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{A'^2}{4AB} + \frac{A'}{rB}, \quad R_{11} = -\frac{A''}{2A} + \frac{A'B'}{4A(r)B(r)} + \frac{A'^2}{4A^2} + \frac{B'}{r},$$

$$R_{22} = -\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1, \quad R_{33} = \left(-\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1 \right) \sin^2 \theta.$$

The scalar curvature is

$$R = -\frac{A''}{AB} + \frac{A'B'}{2AB^2} + \frac{A'^2}{2A^2B} - \frac{2A'}{rAB} + \frac{2B'}{rB^2} - \frac{2}{r^2B} + \frac{2}{r^2}.$$

The Einstein tensor is diagonal and its components are

$$G_{00} = \frac{AB'}{rB^2} - \frac{A}{r^2B} + \frac{A}{r^2}, \quad G_{22} = \frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2},$$

$$G_{11} = \frac{A'}{rA} - \frac{B}{r^2} + \frac{1}{r^2}, \quad G_{33} = \left(\frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2} \right) \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{A''}{2B} - \frac{A'B'}{4B^2} - \frac{A'^2}{4AB} + \frac{A'}{rB}, \quad R_{11} = -\frac{A''}{2A} + \frac{A'B'}{4A(r)B(r)} + \frac{A'^2}{4A^2} + \frac{B'}{r},$$

$$R_{22} = -\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1, \quad R_{33} = \left(-\frac{rA'}{2AB} + \frac{rB'}{2B^2} - \frac{1}{B} + 1 \right) \sin^2 \theta.$$

The scalar curvature is

$$R = -\frac{A''}{AB} + \frac{A'B'}{2AB^2} + \frac{A'^2}{2A^2B} - \frac{2A'}{rAB} + \frac{2B'}{rB^2} - \frac{2}{r^2B} + \frac{2}{r^2}.$$

The Einstein tensor is diagonal and its components are

$$G_{00} = \frac{AB'}{rB^2} - \frac{A}{r^2B} + \frac{A}{r^2}, \quad G_{22} = \frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2},$$

$$G_{11} = \frac{A'}{rA} - \frac{B}{r^2} + \frac{1}{r^2}, \quad G_{33} = \left(\frac{r^2A''}{2AB} - \frac{r^2A'B'}{4AB^2} - \frac{r^2A'^2}{4A^2B} + \frac{rA'}{2AB} - \frac{rB'}{2B^2} \right) \sin^2 \theta.$$

In particular, for $B = 1/A$ we have

$$ds^2 = -A(r)dt^2 + \frac{1}{A(r)}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2.$$

The Christoffel symbols are:

$$\begin{aligned}\Gamma_{01}^0 &= \frac{1}{2}\frac{A'}{A}, & \Gamma_{00}^1 &= \frac{1}{2}AA', & \Gamma_{11}^1 &= -\frac{1}{2}\frac{A'}{A}, & \Gamma_{22}^1 &= -rA, & \Gamma_{33}^1 &= -rA\sin^2\theta, \\ \Gamma_{12}^2 &= \frac{1}{r}, & \Gamma_{33}^2 &= -\sin\theta\cos\theta, & \Gamma_{13}^3 &= \frac{1}{r}, & \Gamma_{23}^3 &= \cot\theta.\end{aligned}$$

Non-trivial components of curvature tensor are:

$$\begin{aligned}R_{0101} &= \frac{1}{2}A'', & R_{0202} &= \frac{r}{2}AA', & R_{0303} &= \frac{r}{2}AA'\sin^2\theta, \\ R_{1212} &= -\frac{r}{2}\frac{A'}{A}, & R_{1313} &= -\frac{r}{2}\frac{A'}{A}\sin^2\theta, & R_{2323} &= r^2(1-A)\sin^2\theta.\end{aligned}$$

In particular, for $B = 1/A$ we have

$$ds^2 = -A(r)dt^2 + \frac{1}{A(r)}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2.$$

The Christoffel symbols are:

$$\begin{aligned}\Gamma_{01}^0 &= \frac{1}{2}\frac{A'}{A}, & \Gamma_{00}^1 &= \frac{1}{2}AA', & \Gamma_{11}^1 &= -\frac{1}{2}\frac{A'}{A}, & \Gamma_{22}^1 &= -rA, & \Gamma_{33}^1 &= -rA\sin^2\theta, \\ \Gamma_{12}^2 &= \frac{1}{r}, & \Gamma_{33}^2 &= -\sin\theta\cos\theta, & \Gamma_{13}^3 &= \frac{1}{r}, & \Gamma_{23}^3 &= \cot\theta.\end{aligned}$$

Non-trivial components of curvature tensor are:

$$\begin{aligned}R_{0101} &= \frac{1}{2}A'', & R_{0202} &= \frac{r}{2}AA', & R_{0303} &= \frac{r}{2}AA'\sin^2\theta, \\ R_{1212} &= -\frac{r}{2}\frac{A'}{A}, & R_{1313} &= -\frac{r}{2}\frac{A'}{A}\sin^2\theta, & R_{2323} &= r^2(1-A)\sin^2\theta.\end{aligned}$$

In particular, for $B = 1/A$ we have

$$ds^2 = -A(r)dt^2 + \frac{1}{A(r)}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2.$$

The Christoffel symbols are:

$$\begin{aligned}\Gamma_{01}^0 &= \frac{1}{2}\frac{A'}{A}, & \Gamma_{00}^1 &= \frac{1}{2}AA', & \Gamma_{11}^1 &= -\frac{1}{2}\frac{A'}{A}, & \Gamma_{22}^1 &= -rA, & \Gamma_{33}^1 &= -rA\sin^2\theta, \\ \Gamma_{12}^2 &= \frac{1}{r}, & \Gamma_{33}^2 &= -\sin\theta\cos\theta, & \Gamma_{13}^3 &= \frac{1}{r}, & \Gamma_{23}^3 &= \cot\theta.\end{aligned}$$

Non-trivial components of curvature tensor are:

$$\begin{aligned}R_{0101} &= \frac{1}{2}A'', & R_{0202} &= \frac{r}{2}AA', & R_{0303} &= \frac{r}{2}AA'\sin^2\theta, \\ R_{1212} &= -\frac{r}{2}\frac{A'}{A}, & R_{1313} &= -\frac{r}{2}\frac{A'}{A}\sin^2\theta, & R_{2323} &= r^2(1-A)\sin^2\theta.\end{aligned}$$

In particular, for $B = 1/A$ we have

$$ds^2 = -A(r)dt^2 + \frac{1}{A(r)}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2.$$

The Christoffel symbols are:

$$\begin{aligned}\Gamma_{01}^0 &= \frac{1}{2}\frac{A'}{A}, & \Gamma_{00}^1 &= \frac{1}{2}AA', & \Gamma_{11}^1 &= -\frac{1}{2}\frac{A'}{A}, & \Gamma_{22}^1 &= -rA, & \Gamma_{33}^1 &= -rA\sin^2\theta, \\ \Gamma_{12}^2 &= \frac{1}{r}, & \Gamma_{33}^2 &= -\sin\theta\cos\theta, & \Gamma_{13}^3 &= \frac{1}{r}, & \Gamma_{23}^3 &= \cot\theta.\end{aligned}$$

Non-trivial components of curvature tensor are:

$$\begin{aligned}R_{0101} &= \frac{1}{2}A'', & R_{0202} &= \frac{r}{2}AA', & R_{0303} &= \frac{r}{2}AA'\sin^2\theta, \\ R_{1212} &= -\frac{r}{2}\frac{A'}{A}, & R_{1313} &= -\frac{r}{2}\frac{A'}{A}\sin^2\theta, & R_{2323} &= r^2(1-A)\sin^2\theta.\end{aligned}$$

In particular, for $B = 1/A$ we have

$$ds^2 = -A(r)dt^2 + \frac{1}{A(r)}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2.$$

The Christoffel symbols are:

$$\begin{aligned}\Gamma_{01}^0 &= \frac{1}{2}\frac{A'}{A}, & \Gamma_{00}^1 &= \frac{1}{2}AA', & \Gamma_{11}^1 &= -\frac{1}{2}\frac{A'}{A}, & \Gamma_{22}^1 &= -rA, & \Gamma_{33}^1 &= -rA\sin^2\theta, \\ \Gamma_{12}^2 &= \frac{1}{r}, & \Gamma_{33}^2 &= -\sin\theta\cos\theta, & \Gamma_{13}^3 &= \frac{1}{r}, & \Gamma_{23}^3 &= \cot\theta.\end{aligned}$$

Non-trivial components of curvature tensor are:

$$\begin{aligned}R_{0101} &= \frac{1}{2}A'', & R_{0202} &= \frac{r}{2}AA', & R_{0303} &= \frac{r}{2}AA'\sin^2\theta, \\ R_{1212} &= -\frac{r}{2}\frac{A'}{A}, & R_{1313} &= -\frac{r}{2}\frac{A'}{A}\sin^2\theta, & R_{2323} &= r^2(1-A)\sin^2\theta.\end{aligned}$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{1}{2}AA'' + \frac{1}{r}AA', \quad R_{11} = -\frac{1}{2}\frac{A''}{A} - \frac{1}{r}\frac{A'}{A},$$

$$R_{22} = 1 - A - rA', \quad R_{33} = (1 - A - rA') \sin^2 \theta.$$

The scalar curvature is

$$R = -A'' - \frac{4}{r}A' - \frac{2}{r^2}A + \frac{2}{r^2}.$$

The Einstein tensor is presented as follows:

$$G_{00} = -\frac{A(r)A'(r)}{r} - \frac{A(r)^2}{r^2} + \frac{A(r)}{r^2}, \quad G_{11} = \frac{A'(r)}{rA(r)} - \frac{1}{r^2A(r)} + \frac{1}{r^2},$$

$$G_{22} = \frac{1}{2}r^2A''(r) + rA'(r), \quad G_{33} = \left(\frac{1}{2}r^2A''(r) + rA'(r)\right) \sin^2 \theta.$$

► SdS metric-C:B=1/A

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{1}{2}AA'' + \frac{1}{r}AA', \quad R_{11} = -\frac{1}{2}\frac{A''}{A} - \frac{1}{r}\frac{A'}{A},$$

$$R_{22} = 1 - A - rA', \quad R_{33} = (1 - A - rA') \sin^2 \theta.$$

The scalar curvature is

$$R = -A'' - \frac{4}{r}A' - \frac{2}{r^2}A + \frac{2}{r^2}.$$

The Einstein tensor is presented as follows:

$$G_{00} = -\frac{A(r)A'(r)}{r} - \frac{A(r)^2}{r^2} + \frac{A(r)}{r^2}, \quad G_{11} = \frac{A'(r)}{rA(r)} - \frac{1}{r^2A(r)} + \frac{1}{r^2},$$

$$G_{22} = \frac{1}{2}r^2A''(r) + rA'(r), \quad G_{33} = \left(\frac{1}{2}r^2A''(r) + rA'(r)\right) \sin^2 \theta.$$

► SdS metric-C:B=1/A

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{1}{2}AA'' + \frac{1}{r}AA', \quad R_{11} = -\frac{1}{2}\frac{A''}{A} - \frac{1}{r}\frac{A'}{A},$$

$$R_{22} = 1 - A - rA', \quad R_{33} = (1 - A - rA') \sin^2 \theta.$$

The scalar curvature is

$$R = -A'' - \frac{4}{r}A' - \frac{2}{r^2}A + \frac{2}{r^2}.$$

The Einstein tensor is presented as follows:

$$G_{00} = -\frac{A(r)A'(r)}{r} - \frac{A(r)^2}{r^2} + \frac{A(r)}{r^2}, \quad G_{11} = \frac{A'(r)}{rA(r)} - \frac{1}{r^2A(r)} + \frac{1}{r^2},$$

$$G_{22} = \frac{1}{2}r^2A''(r) + rA'(r), \quad G_{33} = \left(\frac{1}{2}r^2A''(r) + rA'(r)\right) \sin^2 \theta.$$

► SdS metric-C:B=1/A

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{1}{2}AA'' + \frac{1}{r}AA', \quad R_{11} = -\frac{1}{2}\frac{A''}{A} - \frac{1}{r}\frac{A'}{A},$$

$$R_{22} = 1 - A - rA', \quad R_{33} = (1 - A - rA') \sin^2 \theta.$$

The scalar curvature is

$$R = -A'' - \frac{4}{r}A' - \frac{2}{r^2}A + \frac{2}{r^2}.$$

The Einstein tensor is presented as follows:

$$G_{00} = -\frac{A(r)A'(r)}{r} - \frac{A(r)^2}{r^2} + \frac{A(r)}{r^2}, \quad G_{11} = \frac{A'(r)}{rA(r)} - \frac{1}{r^2A(r)} + \frac{1}{r^2},$$

$$G_{22} = \frac{1}{2}r^2A''(r) + rA'(r), \quad G_{33} = \left(\frac{1}{2}r^2A''(r) + rA'(r)\right) \sin^2 \theta.$$

► SdS metric-C:B=1/A

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{1}{2}AA'' + \frac{1}{r}AA', \quad R_{11} = -\frac{1}{2}\frac{A''}{A} - \frac{1}{r}\frac{A'}{A},$$

$$R_{22} = 1 - A - rA', \quad R_{33} = (1 - A - rA') \sin^2 \theta.$$

The scalar curvature is

$$R = -A'' - \frac{4}{r}A' - \frac{2}{r^2}A + \frac{2}{r^2}.$$

The Einstein tensor is presented as follows:

$$G_{00} = -\frac{A(r)A'(r)}{r} - \frac{A(r)^2}{r^2} + \frac{A(r)}{r^2}, \quad G_{11} = \frac{A'(r)}{rA(r)} - \frac{1}{r^2A(r)} + \frac{1}{r^2},$$

$$G_{22} = \frac{1}{2}r^2A''(r) + rA'(r), \quad G_{33} = \left(\frac{1}{2}r^2A''(r) + rA'(r)\right) \sin^2 \theta.$$

The Ricci tensor is diagonal and its components are:

$$R_{00} = \frac{1}{2}AA'' + \frac{1}{r}AA', \quad R_{11} = -\frac{1}{2}\frac{A''}{A} - \frac{1}{r}\frac{A'}{A},$$

$$R_{22} = 1 - A - rA', \quad R_{33} = (1 - A - rA') \sin^2 \theta.$$

The scalar curvature is

$$R = -A'' - \frac{4}{r}A' - \frac{2}{r^2}A + \frac{2}{r^2}.$$

The Einstein tensor is presented as follows:

$$G_{00} = -\frac{A(r)A'(r)}{r} - \frac{A(r)^2}{r^2} + \frac{A(r)}{r^2}, \quad G_{11} = \frac{A'(r)}{rA(r)} - \frac{1}{r^2A(r)} + \frac{1}{r^2},$$

$$G_{22} = \frac{1}{2}r^2A''(r) + rA'(r), \quad G_{33} = \left(\frac{1}{2}r^2A''(r) + rA'(r)\right) \sin^2 \theta.$$

▶ SdS metric-C:B=1/A