

Ruđer Bošković Institute

Exploring the interstellar medium and magnetic fields of the Milky Way at low-radio frequencies

Vibor Jelić

RBI - Department of Experimental Physics Laboratory for Astroparticle Physics and Astrophysics

Ruđer Bošković Institute

Ana Erceg PhD student @ RBI (2019 - present)

g Luka Turić 2 RBI PhD student @ RBI ent) (2019 - 2023)

Iva Šnidarić PhD student @ RBI

(2020 - 2023)

Andrea Bracco MSCA Postdoc @ RBI (2020 - 2022)

Lana Ceraj Postdoc @ RBI (2020 - 2022)

Lovorka Gajović MSc student@UniZg (2021)

Barbara Šiljeg MSc student@UniZg (2021)

+ LOFAR Survey, Magnetism and EoR KSP teams

Faraday rotation

LOFAR Low Frequency Array

HBA: High Band Antenna 100–250 MHz

LBA: Low Band Antenna 10–80 MHz

LOFAR Low Frequency Array

Faraday rotation $\left(\mathbf{const.} \int_{0}^{d} n_{e} \mathbf{B} \cdot \mathbf{dl} ight)$ $\Delta\theta = \lambda^2$ synchrotron emission DEPOLARIZATION **3 μG** 150 MHZ Polarized intensity @ 22.8 GHz

7200 K

Polarized intensity @ 1.4 GHz

Landecker & Wielebinski 1970

100 K

LINEAR POLARIZATION Stokes Q, U

$$Q = PI \cos \theta \qquad PI = \sqrt{Q^2 + U^2}$$
$$U = PI \sin \theta \qquad \theta = \frac{1}{2} \tan^{-1} \frac{U}{Q}$$

$$\theta = \theta_0 + \lambda^2 \left(\text{const.} \int_0^d n_e \mathbf{B} \cdot d\mathbf{l} \right)$$
FARADAY DEPTH

RM

synthesis

Burn et al. 1966 Brentjens & de Bruyn 2008

 $\mathbf{P}(\lambda^2) = \mathbf{Q}(\lambda^2) + i\mathbf{U}(\lambda^2)$

$$F(\Phi) = \int_{-\infty}^{+\infty} W(\lambda^2) P(\lambda^2) e^{-i2\Phi\lambda^2} d\lambda^2$$

Faraday tomography

LOFAR-HBA observations 3C 196 field

6-8 h (115 - 175 MHz, 183 kHz) $\delta\Phi$ = 1 rad/m²

Jelić et al. 2015

- Faraday thickness is frequency dependant, to resolve Faraday thick structure $\lambda_{\min}^2 \ll \Delta \lambda$
- observations at low-radio frequencies is sensitive to Faraday rotation caused by small column density medium

LOFAR @ 145 MHz $\delta \Phi = 1 \text{ rad/m}^2$

3C 196 field

- comparable angular resolution (~3 arcmin)
- different resolution in Faraday depth (~1 rad/m² vs. ~10 rad/m²)

Faraday thin structure @ 350 MHz is Faraday thick @ 150 MHz Jelić et al. 2015

Lenc et al. 2016 MWA observations

- comparable resolution in Faraday depth (~1rad/m²)
- different angular resolution (~3 arcmin vs. 1 deg)

Faraday tomography

3C 196 field

Field A

Jelić et al. 2015

Truić et al. 2021

 brightness of the emission is 1-10K, only a few percent of intrinsically polarized emission

Where along the line-of-sight does depolarization happen? From where does the observed emission originate from? What drives the morphology of observed emission? GNE NEUTRAL (atomic and molecular) or IONISED GAS +DUST

FIELD

INTERSTELLAR MEDIUM (ISM)

Hot lonised Medium (HIM) $T \sim 10^6$ K; $n \sim 10^{-2}$ cm⁻³

COS

COR

Warm Ionised Medium (WIM) $T \sim 5 \times 10^3$ K; $n \sim 0.5 - 2$ cm⁻³ Warm Neutral Medium (WNM) $T \sim 5 \times 10^3$ K; $n \sim 0.5 - 2$ cm⁻³ Cold Neutral Medium (CNM) $T \sim 10^2$ K; $n \sim 10^2$ cm⁻³ Molecular Clouds $T \sim 10$ K; $n \sim 10^3$ cm⁻³

	CNM	WNM	WIM	HIM	
<i>T</i> [K]	80	5000	8 000	106	
$n_{\rm H} [{\rm cm}^{-3}]$	30	0.4	0.2	0.005	
$n_{\rm e} [{\rm cm}^{-3}]$	0.02	0.01	0.2	0.006	
<i>L</i> [pc]	10	30	30	100	Ferrière 20
$B_{\parallel} = 1 \ \mu G$	0.2 rad m ⁻²	0.25 rad m ⁻²	5 rad m ⁻²	0.5 rad m ⁻²	

MULTI-TRACERS ANALYSIS + SIMULATIONS

Zaroubi et al. 2015, Kalberla & Kerp 2016, Van Eck et al. 2017, Jelić et al. 2018, Bracco et al. 2020, Turić et al. 2021

Padovani et al. 2021, Bracco et al. 2022

Planck map @ 343 GHz Planck Collaboration I and XIX 2015

HI emission (GASS, GALFA-HI i EBHIS)

- HI filaments follow orientation of the magnetic field

HI 1.4 GHz (21cm)

Clark et al. 2014; Kalberla et al. 2016

3C 196 field LOFAR 0 rad/m², EBHIS -5 km/s

Field A LOFAR -1.25 rad/m², EBHIS +1.4 km/s

Zaroubi, Jelić et al. 2015, Kalberla & Kerp 2016, Bracco et al. 2020

 observed correlation between Faraday structures, magnetic field probed by polarised dust emission and neutral hydrogen (mostly CNM and LNM)

Jelić et al. 2018

Turić et al. 2021

- analysis of straight depolarisation canals using Rolling Hough Transform (RHT, Clark et al. 2014)
- an alignment between three tracers of the local interstellar medium, driven by a very ordered local magnetic field in the plane-of-the-sky

3C 196 field: HI filaments (EBHIS data)

- magnetic field is coherent over some parts of the line-of-sight, supported by observations of HI filaments which are aligned to each other over the wide range of velocities (*Jelić et al. 2018*)
- magnetic field is tangled along the line-of-sight, supported by different orientation of HI filaments at different velocities (*Clark 2018, 2019*)

 122°

 120°

 118°

 126°

 128°

 124°

 α (J2000)

Turić et al. 2021

at different Faraday depths originates from different distances:

Angle [°]

Turić et al. 2021

Synthetic observations of the multiphase interstellar medium

- based on Ntormousi, et al. 2017 MHD simulations of colliding super-shells
- polarized emission from synchrotron radiation based on *Padovani et al. 2021,* assuming uniform distribution of cosmic-ray electrons, with variable energy spectral index
- analytical approach for ionization steady state, based on *Wolfire 2003, Bellomi* et al. 2020

Ntormousi, et al. 2017

Bracco et al. 2022

Synthetic observations of the multiphase interstellar medium

Bracco et al. 2022

Synthetic observations of the multiphase interstellar medium

• in the simulations we can distinguish warm/ionized to cold/neutral phases

Hot/fully ionized Warm/partially ionized Cold/neutral

 strong correlation is found with warm/partially ionized, where is the cold gas in polarization ?

Bracco et al. 2022

LoTSS - LOFAR Two-metre Sky Survey https://lofar-surveys.org

Shimwell et al. 2017, 2019, 2022

- LOFAR-HBA observations (120 168 MHz)
- mosaic A: 841 x 64 deg² fields towards outer Galaxy (3 100 deg²)
- mosaic B: 198 x 64 deg² fields towards inner Galaxy (1 200 deg²)

The intermediate Galactic latitude in the outer Galaxy

LoTTS Survey DR2: Erceg et al. 2022

LoTSS Survey DR2: Erceg et al. 2022

M1 - First Faraday moment - intensity weighted mean Faraday depth

Galactic Faraday Sky - the total RM produced by the Galaxy, reconstructed using extragalactic sources

- a correlation between the LoTSS M1 and the Galactic Faraday Sky
- a lack of correlation between the LoTTS M1 and DRAO GMIMS M1 - a result of frequency-dependent Faraday depth resolution and depolarisation

Erceg et al. 2022

Erceg et al. 2022

LoTSS - LOFAR Two-metre Sky Survey https://lofar-surveys.org

Shimwell et al. 2017, 2019, 2022

- LOFAR-HBA observations (120 168 MHz)
- mosaic A: 841 x 64 deg² fields towards outer Galaxy (3 100 deg²)
- mosaic B: 198 x 64 deg² fields towards inner Galaxy (1 200 deg²)

The intermediate Galactic latitude in the inner Galaxy

mosaic B

-0.25 rad m^{-2}

LoTTS Survey DR2: Erceg et al. in prep.

LOFAR (175 - 175 MHZ) is an excellent instrument to do Faraday tomography of the local ISM and constrain its physical properties

- morphology of the observed polarized emission is very rich, with the brightness temperature up to tens of K, including a discovery of many filamentary structures and linear depolarization canals
- based on multi-frequency/multi-tracers analysis we found an alignment between three distinct tracers of the local ISM, the ordered magnetic field plays a crucial role in confining different interstellar medium phases
- the spatial distribution of the LOFAR polarization as a function of the distance can be studied by using the state-of-the-art starlight extinction and polarization data