Kosmička prašina u galaksijama

SAMIR SALIM (INDIANA UNIVERSITY)

Cosmic dust

Origin

Stellar evolution

Evolution

- Formation and destruction
- New theoretical models

Composition

- Grains of different sizes (~smoke)
- Silicates
- Carbonaceous
 - graphite
 - amorphous C
 - PAH (Polycyclic aromatic hydrocarbon)

Dust grain size

Dust in galaxies

Why study?

- Intrinsic nature; evolution
- Effect on UV-NIR light
 - must be corrected
 - systematics in physical parameters important for galaxy evolution

Open Qs

Optical effects of dust

Extinction

For a point source

- Wavelength dependent (not gray)
 - => reddening
 - $E(B-V) = A_B A_V$ a dust column measure
 - A_v also as dust column measure

Extinction

Extinction curve (AKA "law")

Normalized

- Shape
 - 1. UV/optical slope (S)
 - **2.** Bump (B)
- Rv = optical slope

 $A_B/A_V = 1/R_V + 1$

Well measured:MW, LMC, SMC

Salim & Narayanan (2020)

Extinction

Diversity

- 1. Average extinction curves differ among MW, LMC, SMC
- Individual sightlines differ
 MW: 1 < S < 3 (2.5 < Rv < 5)
- Consequence:
 - $A_{\lambda} \neq \text{const Av}$

More fundamental measure of dust?

Extinction related to H column density

- E(B-V) or Av as a proxy for dust column density
- Fixed curve (e.g., Rv = 3.1):
 - Av = Rv E(B-V)
 - $A_{\lambda} = \text{const Av}$
- Which is the most fundamental measure of dust?
 - $A_{\lambda} \neq \text{const Av}$
 - Av ?
 - A_{NIR}?

A_λ?

Bohlin et al.

(1978)

More fundamental measure of dust?

Empirical test using MW sightlines

Only 300 sightlines w/ full extinction curves (OB stars)

- get continuous A_{λ}
- 50 stars with N(H)

GB

 $[10^{20}]$

V(HI+H₂)

density

Hydrogen column

Butler

& Salim

(2021)

More fundamental measure of dust?

Empirical test

- Near-UV correlation correlates the best with N(H)
- Near-UV correlation with N(H) is linear

Takeaway: UV extinction is a more fundamental measure of dust than Av (or E(B-V))

Why extinction curves vary?

E

Models

- Extinction curves slope and bump depend on:
 - composition
 - grain size distribution
 - not on dust density

MW standard curve

- **OB** stars
 - = low latitude
 - = high extinction
- MW/MC opt curve ~
- High-latitude UV curve not well known challenging

Why extinction curves vary?

Е

 (A_V)

=A₁₅₀₀/

ŝ

Slope

Models

- Extinction curves slope and bump depend on:
 - composition
 - grain size distribution
 - not on dust density

MW standard curve

- OB stars
 - = low latitude
 - = high extinction
- MW/MC opt curve ~
- High-latitude UV curve not well known
 challenging

Diversity of extinction curves

- High-latitude UV/optical curve
- Use extensive SDSS spectroscopy
 - **500,000** stars
- Spectral type + stellar par known

intrinsic

- average
- + GALEX, 2MASS, WISE
- MW dust correction for external galaxies • E(B-V) -> A(3000A)
- Non-standard (low-latitude) curve

Takeaway: Extinction curve may be more like LMC at high latitude

Attenuation

Attenuation vs .extinction

- Integrated light loss for extended objects
- Extinction + scattering into line of sight
 - Iocal geometry (dust/stars distribution)
 - global geometry (viewing angle)

Salim & Narayanan (2020)

Dust attenuation curves

Dust attenuation curve

Dust attenuation as a function of λ normalized to V

Challenge

What is the dust-free SED of a galaxy? Use models

Dust attenuation curves

Questions

- Shape of the typical curve ("law")
- Diversity? Dependence on xyz?
- Evolution?

Dust attenuation curves

Physical parameters from SED fitting

Usual approach: assume a curve

Calzetti

MW

- SMC
- MW, SMC are not attenuation curves
- Is Calzetti curve universal?

Attenuation curve from SED fitting?

Attenuation curve can be constrained rather than assumed if IR is available

- Energy balance argument
- WISE 12 and 22 um converted to L(TIR) using templates

SED+LIR fitting with free curve parameters

FUV, NUV, ugriz + LIR

Attenuation curve from SED fitting?

Leave attenuation curve <u>free</u>

- 2 parameters:
- slope of modified Calzetti curve
- UV bump

SDSS-based sample

230,000 galaxies with WISE data

- **z** < 0.3
- GALEX UV
- SDSS
- WISE mid-IR
- GALEX-SDSS-WISE Legacy Catalog (GSWLC; Salim+ 206)
- 700,000 galaxies
- SED fitting M*, SFRs, attenuations
 - SFR accuracy: up to 0.1 dex

GSWLC

GALEX-SDSS-WISE LEGACY CATALOG

Salim, Lee, Janowiecki, da Cunha, Dickinson, Boquien, Burgarella, Salzer and Charlot

GSWLC contains physical properties of ~700,000 galaxies with SDSS redshifts below 0.3 (0.01<z<0.30) and magnitude <18.

GSWLC contains galaxies within GALEX footprint, regardless of a UV detection, altogether covering 90% of SDSS.

Attenuation curve slopes

Maps of average slopes

Takeaway: Very large range of slopes; steep on average

Boquien and Lee (2018)

Salim,

Attenuation curve slopes

Maps of average slopes

Takeaway: Very large range of slopes; steep on average

Salim , Boquien and Lee (2018)

21

What drives attenuation curve slopes?

- Predicted by RT models (Pierini et al. 2004; Seon & Draine 2016)
 - Low opacity: scattering dominates (highly λ dependent)
 - High opacity: absorption dominates (grey)
 - Takeaway: attenuation curve slope correlated with the amount of dust

Salim & Narayanan (2020)

What drives attenuation curve slopes?

Residual dependence on other parameters

Takeaway: Slope does not depend directly on SFH, global geometry; only <u>through</u> dust column density

Residual scatter – different dust compositions?

Attenuation curve UV bump

Wide range of UV bump strengths

Stronger bump in steeper curves (also Kriek and Conroy 2013)
 opposite from the MW-SMC "trend" for extinction curves

Salim, Boquien & Lee (2018)

24

Salim & Narayanan (2020)

Evolution of the attenuation curve?

High-z results often inconsistent

Important: compare all studies at the same Av

Takeaway: At a given Av attenuation curve (slope) may not evolve much

Comparing LBGs, DSFGs, z>6, etc requires caution

Salim & Narayanan (2020)

Total IR luminosities and SFR from IR

Total IR luminosity (L(TIR)) circumvents the need to know the attenuation curve

- SFR = Unobscured SFR (=UV lum) + Obscured SFR (=total IR lum)
- L(TIR) need wavelength sampling in mid-IR, far IR and sub-mm

JWST MIRI = mid IR

 λL_{λ}

log

- Extrapolation to get L(TIR) requires templates
- Templates (dust spectra) reduce range of possible shapes

FIDORY

1130W F1280W

F1500W

F1800W

F2100W

F2550W

P270W

FS60W

÷

Photon-to

conversion o

Existing templates

- Local templates
 - small samples (~100)
 - parameterized on L(TIR)
 - IRAS selected
 - not appropriate for normal SF galaxies of same L(TIR)
- High-z templates
 - require stacking
 - AGN removal difficult
 - redshift parameterized
- Templates for wide range of z and gal types?

WISE + Herschel – ATLAS (400 sq deg)

- 2500 non-AGN galaxies
- Low-z, but with wide range of sSFR
 - high-z "analogs"

 λL_{λ}

log

-8.5

10 Number of GSWLC-X2 galaxies

 10^{0}

Approach

- Fit flexible models Draine & Li models to 7 IR points => interpolation in wavelength
- SED+LIR fitting to get M*, total SFR
- What IR range best constrains L(TIR)

Takeway: Best monochromatic tracer of L(TIR) or total SFR is mid-IR and ~peak

Parameterization

- Dependence both on L(TIR) and sSFR
- Important for monochromatic estimates

New templates

- Redder peak than existing local templates
- + sSFR dependence

New templates

- Estimating L(TIR) or SFR from JWST 21 um
- Software tools for fitting 1-4 IR bands -> L(TIR) and total SFR

Summary

Dust extinction

- What is the most fundamental measure of dust?
- How well do we know the MW extinction curve?

Dust attenuation

- Is there a diversity of attenuation curves?
- What is the average curve?
- What does the slope depend on?
- What does it not depend on?
- What is the meaning of IRX-β relation?

Emission

- What IR range best constrains IR luminosity (SFR)?
- Do we need new templates?