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Extended Gravity

Illumination Sq. I



ü  Several issues  in modern  Astrophysics ask for new paradigms. 
ü  No final evidence for Dark Energy and Dark Matter at fundamental 

level (LHC, astroparticle physics, ground based experiments, LUX…). 
ü  Such problems could be framed extending GR at infrared scales. 
ü  GR does not work at ultraviolet scales (no Quantum Gravity ). 
ü  ETGs as minimal extension of GR considering Quantum Fields in 

Curved Spaces  
ü  Big issue: Is it possible to find out probes and test-beds  for  ETGs? 
ü  Further modes of gravitational waves! 
ü  Constraints at Newtonian and post-Newtonian level could come from:  
               -  Geodesic motions around compact objects e.g- SgrA* 
               -  Lense-Thirring  effect 
                - Exact torsion-balance experiments 
                - Microgravity experiments from atomic physics 
                - Violation of Equivalence Principle (effective masses related to    

      further gravitational  degrees of freedom) 
 
                Main role of GPB and LARES satellites 

Why extending General Relativity?	




The general case: Scalar-tensor-higher-order gravity
ETG means to add further invariants coming from fundamental theories.
Consider the action:

In the metric approach, the gravitational field is described by the metric tensor.  
The field equations are obtained by varying the action  with respect to gμν ,

The trace of the field equation

By varying the action  with respect to the scalar field ϕ, we obtain the Klein-
Gordon  equation



An example:  Non-Commutative Spectral Geometry 
For almost-commutative manifolds, the geometry is described by the tensor 
product M× F of a 4D compact Riemannian manifold M  and a
discrete non-commutative space F, with M describing the geometry of 
spacetime and F the internal space of the particle physics model.

The non-commutative nature of F is encoded in the spectral triple (AF ,HF ,DF ) 

The operator DF is the Dirac operator


 on the spin manifold M; it corresponds to the inverse of the Euclidean 
propagator of fermions and is given by the Yukawa coupling matrix and the 
Kobayashi-Maskawa mixing parameters.

The algebra AF =C∞(M) of smooth functions on M, playing the role of the 
algebra of coordinates, is an involution of operators on the finite-dimensional 
Hilbert space HF of Euclidean fermions.

The algebra AF has to be chosen so that it can lead to the Standard Model of 
particle physics, while it must also fulfill non-commutative geometry 
requirements.



It is chosen to be

The spectral geometry in the product M× F is given by the product rules:

with k=2a; H is the algebra of quaternions, which encodes the non-commutativity of the 
manifold.

The first possible value for k is 2, corresponding to the  Hilbert space of four fermions; it is 
ruled out from the existence of quarks.

The minimum possible value for k is 4 leading to the correct number of k2 =16 fermions in 
each of the three generations.

Higher values of k can lead to particle physics models beyond the Standard Model

where L2(M, S) is the Hilbert space of L2 spinors and DM is 
the Dirac operator of the Levi-Cività spin connection on M

Applying the spectral action principle to the product
geometry M×F leads to the NCSG action

split into the bare bosonic action and the fermionic one. Note that DA =D+A +ϵ’JAJ−1 are 
unimodular inner fluctuations, f is a cutoff function, Λ fixes the energy scale, J is the real 
structure on the spectral triple and ψ is a spinor in the Hilbert space H of the quarks and 
leptons.

The  case of Non-Commutative Spectral Geometry 



In what follows we concentrate on the bosonic part of the action, seen as the bare 
action at the mass scale Λ which includes the eigenvalues of the Dirac operator that 
are smaller than the cutoff scale Λ, considered as the grand unification scale.

Using heat kernel methods, the trace Tr(fDA/Λ) can be written in terms of the 
geometrical Seeley–de Witt coefficients  known for any second-order elliptic differential 
operator, as Σ∞n=0F4−nΛ

4−nan where the function F is defined such that
 F(D2

A )=f(DA).

Considering the Riemannian geometry to be four dimensional, the asymptotic
expansion of the trace reads

where fk are the momenta of the smooth even 
test (cutoff) function which decays fast at 
infinity, and only enters in the multiplicative 
factors:

The  case of Non-Commutative Spectral Geometry 



Since the Taylor expansion of the f function vanishes at zero, the asymptotic expansion 
of the spectral action reduces to

Hence, the cutoff function f plays a role only through its momenta. f0 , f2 , f4 are three real 
parameters, related to the coupling constants at unification, the gravitational constant,
and the cosmological constant, respectively

The NCSG model lives by construction at the grand unification scale, hence providing a 
framework to study early Universe cosmology

The gravitational part of the asymptotic expression for the bosonic sector of the
NCSG action, including the coupling between the Higgs field ϕ and the Ricci curvature 
scalar R, in Lorentzian signature, obtained through a Wick rotation in imaginary time, 
reads

with a a parameter related to fermion and lepton masses and lepton mixing

At unification scale (set up by Λ), α0 = −3f0/(10π2), ξ0 = 1/12.

The  case of Non-Commutative Spectral Geometry 



The square of the Weyl tensor can be expressed in terms
of R2 and RαβRαβ as

The above action  is clearly a particular case of the above  action
describing a general model of  ETG

As we will show, it may lead to effects observable at local scales (in 
particular at Solar System scales); hence it may be tested against 
current gravitational data by GPB and LARES.

IN OTHER WORDS, WE CAN USE GPB AND LARES TO TEST 
FUNDAMENTAL PHYSICS!!!

The  case of non-commutative spectral geometry 



 The weak field limit
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 The weak field limit
•  In order to perform the weak-field limit, we have to perturb the field equations in a 

Minkowski background ημν

•  In a system of gravitationally interacting particles of mass M, the kinetic energy 1/2M v 2 is, 
roughly, of the same order of magnitude as the typical potential energy  U=GM2/r,  with M , 
r, and v  the typical average values of masses, separations, and velocities, respectively, of 
these particles

•  As a consequence one has v2 ≅ GM/r (for instance, a test particle in a circular orbit of 
radius r about a central mass M has velocity v given, in Newtonian mechanics, by the 
exact formula v2=GM/r).

•  The post-Newtonian approximation is a method for obtaining the motion of the system 
to a higher-than-the- first-order approximation (which coincides with the Newtonian 
mechanics) with respect to the quantities GM/r,  or v2, assumed to be small with respect 
to the squared speed of light

•  This approximation is  an expansion in inverse powers  of the speed of light



 The weak field limit
•  The typical values of the Newtonian gravitational potential Φ are  larger (in modulus) than 

10−5 in the Solar System (in geometrized units, Φ is dimensionless).

•  Planetary velocities satisfy the condition v2 ≲ −Φ, while the matter pressure P experienced 
inside the Sun and the planets is generally smaller than the matter gravitational energy 
density −ρΦ; in other words P/ρ ≲ −Φ

•  As matter of fact, one can consider that these quantities, as a function of the velocity, 
give second-order contributions as −Φ ∼ v2 ∼ O(2)

•  Then we can set, as a perturbation  scheme of the metric tensor, the following
     expression

•   Φ, Ψ, φ are proportional to the power c−2 (Newtonian limit) while Ai is proportional to  c−3 
and Ξ to c−4 (post-Newtonian limit)



 The weak field limit
The function f, up to the c−4 order, can be developed as

while all other possible contributions in f are negligible

The field equations  hence read

where △ is the Laplace operator in the flat space



 The weak field limit
The geometric quantities Rμν and R are evaluated at the first order with respect to the 
metric potentials Φ, Ψ and Ai. By introducing the effective (masses



and setting fR(0, 0, ϕ(0))=1, ω(ϕ (0))= 1/2 for simplicity, we get the complete set of differential 
equations

The components of the Ricci tensor  in the weak-field limit read



 The weak field limit

For a perfect fluid, when the pressure is negligible with respect to the mass density ρ, it 
reads Tμν = ρuμuν with uσuσ =1

The energy momentum tensor Tμν can be also expanded

However, the development starts from the zeroth order; hence Ttt =T(0) 
tt = ρ, Tij =T(0) ij = 0 

and Tti =T(1)
 ti = ρvi, where ρ is the density mass and vi is the velocity of the source

Thus, Tμν is independent of metric potentials and satisfies the Bianchi conservation condition
                                                                Tμν,μ =0

Equations thus read



The Newtonian limit: Solutions of the fields Φ, φ and R 

The above equations are a coupled system and, for a pointlike source ρ(x) = Mδ
(x), admit the solutions

where rg is the Schwarzschild radius

and

Moreover ξ and η satisfy the condition

The formal solution of the gravitational
potential Φ, reads

and



The Newtonian limit: Solutions of the fields Φ, φ and R 

for a pointlike source, it  is

where

Note that for fY → 0 i.e. mY → ∞, we obtain the same outcome for the 
gravitational potential for an f(R, ϕ)-theory

The absence of the coupling term between the curvature invariant Y and 
the scalar field ϕ, as well as the linearity of the field equations, guarantees 
that the solution  is a linear combination of solutions obtained within an
 f(R, ϕ.)-theory and an R +Y/mY2-theory



The post-Newtonian limit: Solutions of the fields Ψ and Ai

The post-Newtonian limit: Solutions of the fields Ψ and Ai

which for a pointlike source reads

obtained by setting {…},ij = 0 , while one also has {…}δij = 0 leading to

which is however equivalent to solution

The solutions generalize the outcomes of the theory f(R, RαβRαβ)



The post-Newtonian limit: Solutions of the fields Ψ and Ai

We immediately obtain the solution for Ai, namely

In Fourier space, solution presents the massless pole of general relativity, and the massive 
one is induced by the presence of the RαβRαβ term

The above solution can be rewritten as the sum of general relativity contributions and 
massive modes

Since we do not consider contributions inside rotating bodies, we obtain

For a spherically symmetric system (|x| = r) at rest and rotating with angular frequency 
Ω(r), the energy momentum tensor Tti is

where R is the radius of the body and Θ is the Heaviside function

Since only in general relativity and scalar tensor theories the Gauss theorem is 
satisfied, here we have to consider the potentials Φ, Ψ generated by the ball source
with radius R, while they also depend on the shape of the source



The post-Newtonian limit: Solutions of the fields Ψ and Ai

In fact for any term                    there is a geometric  factor multiplying the Yukawa term, 
namely


We thus get

For Ω(r)=Ω0, the metric potential  reads

Making the approximation

where α is the angle between the vectors x, x’, with x = r x  where ˆx =(sin θ cos ϕ;, sin θ 
sin ϕ, cos θ) and considering only the first order of r’/r, we can evaluate the integration
in the vacuum (r > R) as



The post-Newtonian limit: Solutions of the fields Ψ and Ai

Thus, the field A outside the sphere is

where J =2MR2Ω0/5 is the angular momentum of the ball

The modification with respect to GR  has the same feature as the one 
generated by the pointlike source 

From the definition of mR and mY , we note that the presence of a Ricci scalar 
function [fRR.(0) ≠ 0] appears only in mR

Considering only f(R)-gravity (mY → ∞), the above solution is unaffected
by the modification in the Hilbert-Einstein action.



The body motion in the weak gravitational field
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The body motion in the weak gravitational field

Let us consider the geodesic equations

Where                                         

In terms of the potentials generated by the ball source with radius R, the components of the 
metric gμν read

and the non-vanishing Christoffel symbols read

Let us consider some specific motions



Circular rotation curves in a spherically symmetric field 
In the Newtonian limit, neglecting the rotating component of the source, leads to the usual 
equation of motion of bodies

The study of motion is very simple considering a particular symmetry for mass distribution 
ρ; otherwise analytical solutions are not available

However, our aim is to evaluate the corrections to the classical motion in the easiest
situation, namely the circular motion, in which case we do not consider radial and vertical 
motions.

The condition of stationary motion on the circular orbit reads

where vc denotes the velocity



Circular rotation curves in a spherically symmetric field 
A further remark is needed.

•  The structure of solutions is mathematically similar to the one of fourth-

order gravity f(R, RαβRαβ); however there is a fundamental difference 
regarding   the algebraic signs of the Yukawa  corrections.


•  More precisely, while the Yukawa correction induced by a generic 

function of the Ricci scalar leads to an attractive gravitational force, and 
the one induced by the Ricci tensor squared leads to a repulsive one, here 
the Yukawa corrections induced by a generic function of Ricci scalar and a 
non-minimally coupled scalar field both have a positive coefficient

•  Hence the scalar field gives rise to a stronger attractive force than in f(R)-
gravity, which may imply that f(R, ϕ)-gravity is a better choice than 

•   f(R, RαβRαβ).-gravity

•  However, there is a problem in the limit |x| → ∞: the interaction is scale 
dependent (the scalar fields are massive) and, in the vacuum, the 
corrections turn off.

•  Thus, at large distances, we recover only the classical Newtonian 
contribution.



Circular rotation curves in a spherically symmetric field 

The presence of scalar fields makes the profile smooth, a behavior which is apparent in 
the study of rotation curves. 

Let us consider the phenomenological potential

With α and mS free parameters, chosen by Sanders in an attempt to fit galactic rotation 
curves of spiral galaxies in the absence of dark matter, within the modified Newtonian 
dynamics (MOND) proposal by Milgrom, was further accompanied by a relativistic 
partner known as the tensor-vector-scalar (TeVeS) model

The free parameters selected by Sanders were α ≃ −0.92 and 1/mS ≃ 40 Kpc

This potential was recently used also for elliptical galaxies

In both cases, assuming a negative value for α, an almost constant profile for rotation 
curve is recovered; however there are two issues:

•  f(R,ϕ)-gravity does not lead to that negative value of α, and secondly the presence of 
a Yukawa-like correction with negative coefficient leads to a lower rotation curve 
and only by resetting G  one can  fit the experimental data.

•  Only if we consider a massive, non-minimally coupled scalar-tensor theory  we get a 
potential with negative coefficient.



Circular rotation curves in a spherically symmetric field 

In fact setting the gravitational constant equal to

where G∞ is the gravitational constant as measured at infinity, and imposing

the potential becomes

and then the Sanders potential can be recovered.

In  Fig. below we show the radial behavior of the circular velocity induced by the 
presence of a ball source in the case of the Sanders potential and of potentials shown in 
next Table.





The circular velocity of a ball source of mass M and radius R, with the 
potentials of Table I. We indicate case A by a green line, case B by a yellow line, 
case D by a red line, case C by a blue line, and the GR case by a magenta
line. The black lines correspond to the Sanders model for −0.95<α<−0.92. 
The values of free parameters are ω(ϕ (0)).. . −1/2,
Ξ = −5, η=.3, mY = 1.5 * mR, mS=1.5 * mR, mR =.1*  R−1.



Rotating sources and orbital parameters
Considering the geodesic equations with the Christoffel symbols, we obtain

which in the coordinate system J = (0, 0, J) reads

where

with Lx,Ly and Lz the components of the angular momentum



Rotating sources and orbital parameters

The first terms in the right-hand side of the above equation, depending on the 
three parameters mR, mY and mϕ, represent the Extended Gravity (EG) 
modification of the Newtonian acceleration.

The second terms in these equations, depending on the angular momentum J 
and the EG parameters mR, mY and mϕ, correspond to DRAGGING  
CONTRIBUTIONS

The case mR → ∞, mY → ∞ and mϕ → 0 leads to Λ(r) → 0, ζ(r)→ 1 and Σ(r) → 
0, and hence one recovers the familiar results of GR

These additional gravitational terms can be considered as perturbations of
Newtonian gravity, and their effects on planetary motions can be calculated 
within the usual perturbation  schemes assuming the Gauss equations 



Rotating sources and orbital parameters

Let us consider the right-hand side of the above equations as the components (Ax , Ay , Az ) 
of the perturbing acceleration in the system (X, Y, Z) (see next Fig.), with X the axis passing
through the vernal equinox γ, Y the transversal axis, and Z the orthogonal axis parallel to 
the angular momentum J of the central body

In the system (S,T,W), the three components can be expressed as (As , At , Aw), with S the
radial axis, T the transversal axis, and W the orthogonal one

We will adopt the standard notation:

•  a is the semimajor axis; 
•  e is the eccentricity
•  p=a(1 − e2) is the semilatus rectum;
•   i is the inclination; 
•  Ω is the longitude of the ascending node N;
•  ω~ is the longitude of the pericenter Π;
•  M0 is the longitude of the satellite at time t = 0; 
•  ν is the true anomaly;
•   u is the argument of the latitude given by u = ν + ω~ − Ω;
•   n is the mean daily motion equal to n=(GM/a3)1/2;
•  and C is twice the velocity, namely 



i = ∢ YNΠ is the inclination; Ω = ∢ XON is the longitude of the ascending node 
N; ω~ = broken∢ XOΠ is the longitude of the pericenter Π; ν = ∢ ΠOP is 
the true anomaly; u = ∢ ΩOP = ν + ω~ − Ω is the argument of the latitude; J 
is the angular momentum of rotation of the central body; and JSatellite is the 
angular momentum of revolution of a satellite around the central body.



Rotating sources and orbital parameters
The transformation rules between the coordinates
 frames (X, Y, Z) and (S, T,W) are

and the components of the angular momentum obey the 
equations

The components of the perturbing acceleration in the
(S, T,W) system read

The As component has two contributions: the former one results from the modified 
Newtonian potential Φball(x), while the latter one results from the gravitomagnetic field
Ai and it is a higher order term than the first one

Note that the components At and Aw depend only on the gravito-magnetic field



Rotating sources and orbital parameters
The Gauss equations for the variations of the six orbital parameters, resulting from the
perturbing acceleration with components Ax , Ay ,Az , read

where

we have derived the corresponding equations of 
the six orbital parameters for extended gravity, 
with the dynamics of a; e; ω~ ; L0 depending 
mainly on the terms related to the modifications 
of the Newtonian potential, while the dynamics 
of Ω and i depend only on the dragging
terms



Rotating sources and orbital parameters
Considering an almost circular orbit (e ≪ 
1), we integrate the Gauss equations with 
respect to the only anomaly ν, from 0 to 
ν(t) = nt, since all other parameters have 
a slower evolution than ν, hence they can 
be considered as constraints with respect 
to ν At first order we get

We hence notice that the contributions to the semimajor axis a and eccentricity e vanish, as in 
GR, while there are nonzero contributions to i, Ω, ω~ and M0. In particular, the contributions 
to the inclination i and the longitude of the ascending node Ω depend only on the drag effects of 
the rotating central body, while the contributions to the pericenter longitude ω~ and mean 
longitude at M0 depend also on the modified Newtonian potential

where



Rotating sources and orbital parameters

Finally, note that in the ETG models we have considered here, the 
inclination i has a nonzero contribution, in contrast to the result 
obtained within GR, and also
 Δω (t) ≠ ΔM0(t), given by

In the limit mR → ∞; mY → ∞ and mϕ → 0, we obtain the
well-known results of GR.



Experimental constrains
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Experimental constrains
The orbiting gyroscope precession can be split into a part generated by the metric 
potentials, Φ and Ψ, and one generated by the vector potential A

The equation of motion for the gyrospin three-vector S is

where the geodesic and Lense-Thirring precessions are

The geodesic precession, ΩG  can be written as the sum of two terms, one obtained with 
GR and the other being the extended gravity contribution

Then we have

where

Where |x|= r



Experimental constrains
Similarly one has

where we have assumed that, on the average, <(J · x).xi > . 

The tiny changes in the direction of spin gyroscopes, contained in the satellite 
orbiting at h = 650 km of altitude and crossing directly over the poles, have 
been measured with extreme precision

with

The Gravity Probe B (GPB) satellite contains a set of four gyroscopes and has 
tested two predictions of GR: the geodetic effect and frame-dragging (Lense-
Thirring effect)

and 

The values of the geodesic precession and the Lense-Thirring precession, 
measured by the Gravity Probe B satellite and those predicted by GR, are
given in 



Experimental constrains

Imposing the constraint |Ω (EG) G | ≲ δΩG and |Ω(EG) LT |≲ δΩLT,  with r*= 
R⊕ + h where R⊕ is the radius of the Earth and h = 650 km is the altitude of 
the satellite, we get

since, from the experiments, we have |Ω(GR) G |= 6606 mas
and δ|ΩG|=18 mas, |Ω(GR) 

LT |= 37.2 mas and δ|ΩLT| = 7.2 mas

We thus obtain that mY ≥7.3 ✕ 10−7m−1



Experimental constrains
The Laser Relativity Satellite (LARES) mission of the Italian Space Agency is 
designed to test the frame dragging and the Lense-Thirring effect, to within 1% 
of the value predicted in the framework of GR

The body of this satellite has a diameter of about 36.4 cm and weights
about 400 kg

It was inserted in an orbit with 
1450 km of perigee, an inclination 
of 69.5 ± 1 degrees and eccentricity
9.54 × 10−4

It allows us to obtain a stronger 
constraint
for mY:

From  which we obtain mY ≥ 1.2 ×10−6m−1



Experimental constrains
In the specific case of the Non-Commutative Spectral Geometry, the above 
quantities become for  mR → ∞, 

and                    implying that

and

The first relation

hence the constraint on mY imposed from GPB is

whereas the LARES experiment  implies

A  bound similar to the one obtained earlier by using binary pulsars, or the 
Gravity Probe B data.

However, a more stringent constraint has been obtained using torsion balance 
experiments

using results from laboratory experiments designed to test the fifth force, one arrives 
to the tightest constraint mY > 104 m−1



Experimental constrains

In conclusion, using data from the Gravity Probe B and LARES missions, we 
obtain similar constraints on mY, a result that one could have anticipated since 
both experiments are designed to test the same type of physical phenomena

However, by using the stronger constraint for mY, namely mY > 104 m−1, we observe 
that the modifications to the orbital parameters induced by Non-Commutative 
Spectral Geometry are indeed small, confirming the consistency between the 
predictions of NCSG, as a gravitational theory beyond GR, and  Gravity Probe B
 and LARES measurements

This results show that  space-based experiments can be used 
to test extensively parameters of fundamental theories



Conclusions
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Conclusions

•  In the context of ETGs, we have studied the linearized field equations in the limit of weak 
gravitational fields and small velocities generated by rotating gravitational sources, aimed 
to constrain the free parameters, which can be seen as effective masses (or lengths).



•  We have studied the precession of spin of a gyroscope orbiting around  a rotating 
gravitational source.

•  Such a gravitational field gives rise, according to GR predictions, to geodesic and Lense-
Thirring processions, the latter being strictly related to the off-diagonal terms of the metric 
tensor generated by the rotation of the source

•  We have focused in particular on the gravitational field generated by the Earth, and on the 
recent experimental results obtained by the Gravity Probe B and LARES  satellites, which 
tested the geodesic and Lense-Thirring spin precessions with high precision.

•  In particular, we have calculated the corrections of the precession induced by scalar, tensor 
and curvature corrections.



Conclusions

•  Considering an almost circular orbit, we integrated the Gauss equations and obtained the 
variation of the parameters at first order with respect to the eccentricity. 

•  We have shown that the induced EG effects depend on the effective masses mR, mY and mϕ , 
while the non validity of the Gauss theorem implies that these effects also depend on the 
geometric form and size of the rotating source.

•  Requiring that the corrections be within the experimental errors, we then imposed 
constraints on the free parameters of the considered EG model. Merging the experimental

    results of Gravity Probe B and LARES, our results can be summarized as follows:

and mY ≥ 1.2 × 10−6m−1 



Conclusions

•  The field equation for the potential Ai, is time independent provided the potential Φ is time 
independent.

•  This aspect guarantees that the solution  does not depend on the masses mR and mϕ and, in 
the case of f (R, ϕ). gravity, the solutions the same as in GR

•  In the case of spherical symmetry, the hypothesis of a radially static source is no longer
     considered, and the obtained solutions depend on the choice of  f (R, ϕ)  ETG model, 
     since the  geometric factor F(x) is time dependent.

•  Hence in this case, gravitomagnetic  corrections to GR emerge with time-dependent sources

•  The case of non-commutative spectral geometry that we discussed above deserves a final 
remark

•  This model descends from a fundamental theory and can be considered as a particular case 
of ETGs

•  Its parameters can be probed in the weak-field limit and at local  scales, opening new 
perspectives worthy of further developments.


