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Introduction and context



Initial conditions

(inflation)

t

Dark matter
Dark energy

Inflation

Particle physics, string theory…

Big discoveries in cosmology



Cosmic Microwave Background

Leftover radiation from the time when 
the universe becomes transparent

t

What do we learn from it?

The horizon problem



Cosmic Microwave Background
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Cosmic Microwave Background

Scale-invariant power spectrum!

One of the strongest evidence for inflation



Cosmic Microwave Background

In general, the whole shape of the power spectrum is special

It requires special initial conditions and matter content 

Emergence of the CDM cosmological modelΛ



Cosmic Microwave Background



1) Properties of the initial conditions

2) Everything gravitates

Single “clock”? Speed of inflaton fluctuations less than 1? 

“Spectroscopy” of massive/higher spin particles? 

Primordial features in the power spectrum?

Sum of neutrino masses. Other massive (but light) relics? Ultralight axions?

Spatial curvature, dark energy?

New energy components in early or late universe?

Probing dark sector, new long-range interactions?  

Open questions



What is the way forward?



Spectroscopic galaxy surveys
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The power spectrum has features that carry information about cosmology

Power spectrum
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BUT



Correlation function and the BAO peak

The feature is set in the early universe

Very robust against nonlinear evolution and galaxy formation 



BAO

Correlation function and the BAO peak

BAO has been extremely useful in combination with the CMB

Can we do even better than this?



Beyond the BAO peak

BAO has been bread and butter of galaxy clustering so far

Spectroscopic galaxy surveys contain much more information

Like in the CMB, use the whole field and summary statistics

For example, the whole “shape” of the galaxy power spectrum

Full-shape analysis



Galaxy map
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Figure 1: Left panel : The posterior distribution for the late-Universe parameters
H0,⌦m and �8 obtained with priors on !b from Planck (gray contours) and BBN (blue
contours). For comparison we also show the Planck 2018 posterior (red contours) for
the same model (flat ⇤CDM with massive neutrinos). Right panel : The monopole
(black dots) and quadrupole (blue dots) power spectra moments of the BOSS data for
high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples, along
with the best-fit theoretical model curves. The corresponding best-fit theoretical
spectra are plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

adopted in this work allows for a clear comparison between the two experiments at
the level of the fundamental ⇤CDM parameters. Our measurement of H0 is driven by
the geometric location of the BAO peaks, whereas the limits on ⌦m result from the
combination of both the geometric (distance) and shape information. �8 is measured
through redshift-space distortions. We performed several tests to ensure that our
constraints are saturated with these three effects, and confirmed that distance ratio
measurements implemented through the Alcock-Paczynski effect can only marginally
affect the cosmological parameters of ⇤CDM. However, the situation changes in
its extensions, in which the Alcock-Paczynski effect becomes a significant source of
information.

It is important to emphasize that we did not assume strong priors on the power
spectrum shape in our analysis, in contrast with the previous full-shape studies,
which used such priors. In order to explore the relation with those previous works
we ran an analysis with very tight shape priors and obtained essentially the same
results as in Tab. 1. However, in that case ⌦m cannot be viewed as an independently
measured parameter, since the shape priors completely fix the relation between ⌦m

– 6 –

Full-shape analysis
Similar to CMB, directly measures “shape” parameters

all cosmological parameters

no CMB input needed

Beyond the BAO peak
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Beyond the BAO peak

A key ingredient is a robust, flexible and accurate theoretical model

What is the theory of fluctuations in galaxy density on large scales?



Theory of galaxy fluctuations



Effective Field Theory of Large-scale 
Structure

Carrasco, Hertzberg, Senatore (2012)
Baumann, Nicolis, Senatore, Zaldarriaga (2010)

What is a consistent theoretical 
framework to describe galaxy density 
field on large scales?

DM particles do not move far away

Galaxy formation is to a good 
approximation local in space

…



Effective Field Theory of Large-scale 
Structure

Large distance dof: δg

EoM are fluid-like, including gravity

Symmetries, Equivalence Principle

Expansion parameters: , δg ∂/kNL

All “UV” dependence is in a handful of free parameters

On scales larger than  this is the universal description of galaxy clustering1/kNL



Effective Field Theory of Large-scale 
Structure
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for        at low redshiftsR ∼ few Mpc

The horizon scale    H−1
0 ∼ 104 Mpc

number of pixels in LSS:    Npix. ≈ (H0Rnl.)−3 ∼ 109

What do we gain?

NLSS
pix. ≫ NCMB

pix.



counterterm is combined with the higher derivative bias since they are perfectly
degenerate for the galaxy power spectrum. Third, the contributions from operators
�
3
, �G2, G3 disappeared after renormalization. This is the reason why b3, b�G2 , bG3 are

absent in Eq. (2.10).

Using the same bias model we can also calculate the galaxy-matter cross-spectrum
which is of relevance, for instance, for lensing surveys. It has the following form [54]:

Pgm(z, k) = b1(z)(Plin(z, k) + P1-loop, SPT(z, k)) +
1

2
b2(z)I�2(z, k)

+

✓
bG2(z) +

2

5
b�3(z)

◆
FG2(z, k)

+ bG2(z)IG2(z, k)�
�
R

2

⇤(z) + 2c2s(z)b1(z)
�
k
2
Plin(z, k) .

(2.12)

Note that the matter counterterm and the higher-derivative bias enter the cross-
spectrum and the the auto-spectrum in different combinations. In principle, This
allows one to break the degeneracy between them using the galaxy-lensing observa-
tions.

2.4 Power Spectrum of Biased Tracers in Redshift Space

The radial positions of galaxies in a survey are assigned using their redshifts, which
are contaminated by the peculiar velocity field. This gives rise to the so-called
redshift-space distortions RSD, which allow one to probe the velocity field along the
line-of-sight direction ẑ. We will work within the flat-sky plane-parallel approxima-
tion, where the redshift-space mapping can be fully characterized by the cosine of
the angle between the line-of-sight ẑ and the wavevector of a given Fourier mode k,
µ ⌘ (ẑ · k)/k. In this setup, the expression for the one-loop redshift-space power
spectrum reads (see Refs. [59, 60]):

Pgg,RSD(z, k, µ) =Z
2

1
(k)Plin(z, k) + 2

Z

q

Z
2

2
(q,k� q)Plin(z, |k� q|)Plin(z, q)

+ 6Z1(k)Plin(z, k)

Z

q

Z3(q,�q,k)Plin(z, q)

+ Pctr,RSD(z, k, µ) + P✏✏,RSD(z, k, µ) ,

(2.13)
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where the redshift-space kernels are given by

Z1(k) = b1 + fµ
2
, (2.14a)
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where k = k1 + k2 + k3 and Gn are the velocity divergence kernels [30]. Note that
Z3(k1,k2,k3) contains only bias parameters that give nontrivial contributions to the
redshift-space one-loop power spectrum and that it must be symmetrized over its
momentum arguments when used in Eq. (2.13). Furthermore, we have omitted the
time dependence of f ⌘ d logD/d log a and biases for clarity.

Let us discuss the structure of the last two terms in Eq. (2.13) in some detail.
The leading counterterm contributions in redshift space can be seen as a simple
generalization of the dark matter sound speed [59, 72],

Pctr,RSD,r2�(z, k, µ) =� 2c̃0(z)k
2
Plin(z, k)

� 2c̃2(z)f(z)µ
2
k
2
Plin(z, k)� 2c̃4(z)f

2(z)µ4
k
2
Plin(z, k) ,

(2.15)

where c̃0(z), c̃2(z) and c̃4(z) are quantities that are generically expected to have sim-
ilar value to the real-space dark matter sound speed in units of [Mpc/h]2. However,
due the presence of fingers-of-God [73] these counterterms can be more significant
for some tracers than naïvely expected. Since the fingers-of-God are induced by
the higher-derivative terms in the non-linear RSD mapping, one may include an ad-
ditional counterterm proportional to k

4
µ
4
Plin(z, k) as a proxy of the higher-order

contributions,

Pctr,RSD,r4
z�(z, k, µ) = �c̃(z)f 4(z)µ4

k
4(b1(z) + f(z)µ2)2Plin(z, k) , (2.16)

where we have inserted the linear Kaiser factor (b1(z)+f(z)µ2)2 [74] for convenience.
Whilst, we leave the systematic derivation of all corrections of this order for future
work, we stress that addition of this term can be important in order to fit the data
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contain galaxy

formation physics

1-loop galaxy power spectrum

Infrared resummation

space cases. Since the large bulk flows affect only the BAO wiggles, the common
starting point is to split the linear power spectrum into the smooth Pnw and wiggly
component Pw;

Plin(k) = Pnw(k) + Pw(k) . (2.24)

The details of the algorithm used to perform this splitting is given in Section 4.
In real space we follow the approach presented in Refs. [49], which was developed

in the context of time-sliced Perturbation Theory (TSPT) [48]. Following the wiggly-
smooth decomposition one computes the damping factor9

⌃2(z) ⌘
1

6⇡2

Z kS

0

dq Pnw(z, q)


1� j0

✓
q

kosc

◆
+ 2j2

✓
q

kosc

◆�
, (2.25)

where kosc is the wavenumber corresponding to the BAO wavelength `BAO ⇠ 110h/Mpc,
jn(x) are spherical Bessel functions of order n, and kS is the scale separating the long
and short modes. We use the value kS = 0.2 h/Mpc as advocated in Ref. [49], even
though any other choice in the physically relevant range (0.05�0.1) h/Mpc produces
a very similar result. When we perform the one-loop calculation, the residual depen-
dence of the final result on kS is comparable to the two-loop wiggly contribution and
hence should be treated as a small theoretical error. Once the damping factor ⌃2(z)

is obtained, one computes the tree-level IR-resummed dark matter power spectrum
as

Pmm,LO(z, k) = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k) . (2.26)

The various one-loop IR-resummed power spectra for matter (XY=mm), galaxy
(XY=gg), and the matter-galaxy cross spectrum (XY=gm) can be obtained from
the usual one-loop integrals evaluated using Pmm,LO(z, k) as an input instead of the
linear power spectrum. Schematically, we can write

PXY = Ptree,XY[Pmm,LO] + P1�loop,XY[Pmm,LO] , (2.27)

where the various spectra Ptree,XY are given by

Ptree,mm = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k)(1 + k

2⌃2(z)) ,

Ptree, gm = b1Ptree,mm , Ptree, gg = b
2

1
Ptree,mm .

(2.28)

Note that the additional term k
2⌃2(z)e�k2⌃2

(z)
Pw(z, k) prevents double-counting of

the bulk flow contributions that are contained in the one-loop expression.
Let us now focus on the redshift-space power spectrum of galaxies. IR resumma-

tion becomes more complicated in this case, since the tree-level IR resummed matter

9Note the additional factors of 2⇡ compared to Refs. [49, 51]; these are a result of using a
different Fourier transform convention.
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power spectrum picks up non-trivial angular dependence from the anisotropic damp-
ing factor [51],

Pmm, LO(z, k, µ) ⌘ (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)
⌘
, (2.29)

where we have introduced the new damping function, which depends on the loga-
rithmic growth factor, f(z);

⌃2

tot
(z, µ) = (1 + f(z)µ2(2 + f(z)))⌃2(z) + f

2(z)µ2(µ2
� 1)�⌃2(z) . (2.30)

This is a function of the real-space damping (2.25) and on a new contribution,
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1
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dq Pnw(z, q)j2

✓
q
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◆
. (2.31)

Due to the anisotropy of the BAO damping, the one-loop calculation strictly requires
computation of anisotropic loop integrals, which in contrast to the real space case,
cannot be reduced to one-dimension. However, these can be simplified by splitting
the one-loop contribution itself into a smooth and wiggly part. More precisely, one
first computes the usual redshift-space one-loop integrals with a smooth part only.
Second, one evaluates the same integrals with one insertion of the unsuppressed
wiggly power spectrum and applies the direction-dependent damping factor (2.30)
to the output, giving [46]

Pgg(z, k, µ) = (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)(1 + k
2⌃2

tot
(z, µ))

⌘

+ Pgg, nw, RSD, 1-loop(z, k, µ) + e�k2⌃2
tot(z,µ)Pgg, w, RSD, 1-loop(z, k, µ) .

(2.32)

Here P...1-loop[Plin] are treated as functionals of the input linear power spectrum;

Pgg, nw, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw] ,

Pgg, w, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw + Pw]� Pgg, RSD, 1-loop[Pnw] .
(2.33)

For simplicity we have neglected the one-loop contributions obtained from two in-
sertions of the wiggly power spectrum (since these scale as P

2

w
). Once the two

contributions Pgg,w and Pgg,nw are summed, the eventual IR-resummed anisotropic
power spectrum can be used to compute the multipoles in Eq. (2.20).

It is important to stress that our implementation of IR resummation at one loop
order contains four potential sources of error:

• Imperfectness of the wiggly-non-wiggly decomposition;

• Dependence of the damping factor on the separation cutoff;

• Inaccuracy of the factorization prescription;
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Parameters: (ωb, ωcdm, h, A1/2, ns, mν) × (b1A1/2, b2A1/2, b𝒢2
A1/2, Pshot, c2

0 , c2
2 , c̃)
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How well does PT work?
Nishimichi et al. (2020)

Blind analysis, very large volume ~ 600 (Gpc/h)3), realistic galaxies

l=0

l=2

0.02 0.04 0.06 0.08 0.10 0.12
0

500

1000

1500

2000

k, h Mpc-1

kP
l(k

),
[M
pc

/h
]2

Power spectrum multipoles
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FIG. 13. Posterior distributions from the post-unblinding analyses where one or two additional bias parameters are floated.

1. Residual shot noise

It is known that dark matter halos or associated galax-
ies are not a Poisson sample of the underlying hypothet-
ical continuous distribution [e.g., 114, 115]. As explained
in Sec. III C, the standard shot noise contribution is al-
ready subtracted in the power spectra data files provided
by the Japan Team. The subtracted shot noise contribu-
tion is, strictly speaking, not really an estimate of the ad-
ditional fluctuations associated with the connection be-

tween the underlying smooth field and the discrete point
distribution, but simply the “zero-lag” correlator inher-
ent in a point process. Therefore, the assumption of the
zero shot-noise like term adopted in the blinded analyses
presented in the main text is not guaranteed to be valid.
We study here the impact of adding a nuisance parame-
ter to model the residual shot term, which is relevant for
the monopole moment.

The green contours in Fig. 13 show the result at four
di↵erent kmax as indicated in the figure legend. They
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Application to BOSS data

Galaxy map
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Figure 1: Left panel : The posterior distribution for the late-Universe parameters
H0,⌦m and �8 obtained with priors on !b from Planck (gray contours) and BBN (blue
contours). For comparison we also show the Planck 2018 posterior (red contours) for
the same model (flat ⇤CDM with massive neutrinos). Right panel : The monopole
(black dots) and quadrupole (blue dots) power spectra moments of the BOSS data for
high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples, along
with the best-fit theoretical model curves. The corresponding best-fit theoretical
spectra are plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

adopted in this work allows for a clear comparison between the two experiments at
the level of the fundamental ⇤CDM parameters. Our measurement of H0 is driven by
the geometric location of the BAO peaks, whereas the limits on ⌦m result from the
combination of both the geometric (distance) and shape information. �8 is measured
through redshift-space distortions. We performed several tests to ensure that our
constraints are saturated with these three effects, and confirmed that distance ratio
measurements implemented through the Alcock-Paczynski effect can only marginally
affect the cosmological parameters of ⇤CDM. However, the situation changes in
its extensions, in which the Alcock-Paczynski effect becomes a significant source of
information.

It is important to emphasize that we did not assume strong priors on the power
spectrum shape in our analysis, in contrast with the previous full-shape studies,
which used such priors. In order to explore the relation with those previous works
we ran an analysis with very tight shape priors and obtained essentially the same
results as in Tab. 1. However, in that case ⌦m cannot be viewed as an independently
measured parameter, since the shape priors completely fix the relation between ⌦m

– 6 –

Full-shape analysis
Similar to CMB, directly measures “shape” parameters

all cosmological parameters

no CMB input needed

BOSS data

~ few x 106 galaxies


~ 6 (Gpc/h)^3



Application to BOSS data

Figure 5. CMB-independent cosmological constraints obtained from this work for the baseline
⌫⇤CDM model, as tabulated in Tab. 2. The ‘FS+BAO’ dataset refers to the combination of full-shape
(FS) modelling of unreconstructed power spectra via a one-loop full-shape model and BAO-modelling
of reconstructed power spectra to compute Alcock-Paczynski parameters, incorporating the theoretical
error methodology of Ref. [66], with a joint sample covariance used to unite the two approaches. The
‘FS’ dataset (equivalent to the full-shape analysis of Sec. 2.3) was presented in Ref. [52] and ‘Planck
2018’ refers to Ref. [1]. This plot shows the cosmological constraints obtained from combination of
four BOSS DR12 data chunks, which are displayed separately in Fig. 6. H0 is quoted in km s�1Mpc�1

units.

a result of the paucity of modes in the large-scale regime, which are particularly sensitive to
ns.

In Fig. 6 we show the constraints obtained from analyzing each of the four data chunks
separately, with corresponding parameters given in Tab. 5 of Appendix B. Note that, even in
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Ivanov, MS, Zaldarriaga (2019)
d’Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil Marin (2019)

Philcox, Ivanov, MS, Zaldarriaga (2020)

Using BBN prior on ωb

H0 = 68.6 ± 1.1 km/s/Mpc

H0 = 67.8 ± 0.7 km/s/Mpc (fixing the tilt)



Application to BOSS data

Many additional analyses including new estimators, data 

compression, higher-order statistics etc.

Most of the work done for the standard cosmological model

What do we expect in the near future?

These were large steps forward



Future prospects



Beyond CDMΛ

Many extensions of the standard model are interesting to explore

DESI/Euclid + CMB has huge constraining power

There is a unique potential for discoveries in the next ~5 yr



Beyond CDM - neutrinosΛ

Free-streaming neutrinos cause scale-dependent 

suppression of structure



Beyond CDM - neutrinosΛ
Chudaykin, Ivanov (2019)

for a Euclid-like survey



Beyond CDMΛ

Other neutrino-like light but massive relics in the dark sector

Spatial curvature of the universe

Various proposed models to resolve Hubble tension

Small fractions of dark matter being ultralight axions

Long range forces in the dark sector

~ 5-10 times better 
constraints with LSS

Physics of inflation and primordial non-Gaussianities



Conclusions

Great success in the past, large amount of data in the near future

There is no guaranteed discovery, many options to explore

A bulk of relevant data will be collected in the next 5 years

An order of magnitude improvements in all directions

A lot of work to be done in theory and data analysis
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Leading nonlinear corrections

h�k��ki = h�(1)k �(1)�ki+ h�(2)k �(2)�ki+ h�(1)k �(3)�ki+ h�(3)k �(1)�ki+ · · ·
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Figure 18: Function B` as defined in Eq. (B.3) as a function of k for the monopole and
quadrupole. We note an enhancement on small scales when reducing the velocity dispersion
(e.g. by suppressing the matter power spectrum).

indicates possible anisotropic effects of the structure suppression of axions and constitutes a
completely new signature beyond the well-known structure suppression. To investigate this,
we make use of a very simple redshift space model for the galaxy power spectrum where we
approximate the galaxy power spectrum as

Pg(k, µ) ⇡ e
�(kµf�v)2

�
1 + fµ

2
�2

b
2
gPlin(k), (B.1)

where bg is the galaxy bias and where �v is the galaxy velocity dispersion. This model is
based on the Kaiser approximation [99] with a Gaussian kernel for the finger-of-God effects.
The velocity dispersion can be roughly approximated at linear order with (see Ref. [100] and
references therein)

�
2
v,lin =

1

6⇡2

Z
dqPlin(q). (B.2)

Using Eq. (3.2), we have that the multipoles of the power spectrum are

P`(k) =
2` + 1

2
b
2
gPlin(k)

Z 1

�1
dµ e

�(kµf�v)2
�
1 + fµ

2
�2 P`(µ)

| {z }
⌘B`(k;�v)

. (B.3)

From this simple model, we find that the increase in the quadrupole moment is at-
tributable to a decrease in the velocity divergence which arises when the linear matter power
spectrum is suppressed and the value of the integral in Eq. (B.2) decreases. This decrease in
�v leads to a higher value of the B`, especially for the ` = 2 as shown in Fig. 18.

C Axion Transfer Function Interpolation

The axion transfer function defined in Eq. 3.3 captures the deviation from ⇤CDM due to
axions in the matter power spectrum. It is most often obtained through semi-analytic approx-
imations [27] or numerically with adapted Boltzmann codes. In the present study however,
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2⇡/`BAO < q ⌧ 2⇡/�

Infrared resummation

4

has been kept in (??). For each q mode, this scales as
Plin(q)(`BAO/�)2 for q ⌧ `�1

BAO
, and Plin(q)/(q�)2 for

q > `BAO. The corrections are suppressed by one or
more powers of �/`BAO and q�, respectively. Hence, due
to the bulk motions, ⇠̃g has a broader peak with ⌃2

⇤
given

by

⌃2

⇤
⇡

1

6⇡2

Z
⇤

0

dqPlin(q)[1�j0(q`BAO)+2j2(q`BAO)], (15)

where jn is the nth order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ⇠g is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5

Pw
1�loop

(k > ⇤) =
1

2

Z
⇤ d3q

(2⇡)3
(q · k)2

q4
Plin(q)

[Pw
lin
(|k + q|) + Pw

lin
(|k � q|)� 2Pw

lin
(k)] .

(17)

For q ⌧ k the expression in the square brackets simplifies
to �4Pw

lin
(k) sin2(q · k̂`BAO/2), giving

Pw
1�loop

(k > ⇤) = ⌃2

⇤
k2Pw

lin
(k), (18)

and taking the Fourier transform with respect to k re-
produces (??).

Note that for any k, our approximation is valid for all
q ⌧ k while the above expressions are based on a rigid
separation of scales above and below ⇤. Of course, in
reality Pw

g (k) has support in a large range of momenta,

roughly (0.05�1) hMpc�1. Even if a q-mode falls in this
range, it is still true that its leading e↵ect on higher k
modes is the mere bulk motion. Therefore, it contributes
to the peak power through ⇠g,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening e↵ect of all smaller q modes, i.e.
by taking ⇤ to increase with k. Below, we will implement
this idea by taking ⇤ = ✏k, with ✏ ⌧ 1.

Taking ✏ = 1/2, the above expression (??) predicts an
e↵ective broadening of ⌃✏k⇤ ⇡ 5.5h�1Mpc, where k⇤ is
defined by ⌃✏k⇤k⇤ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction

5 The full one-loop power spectrum is given by
Z

d3q

(2⇡)3
[6F3(q,�q,k)Plin(k)+2F 2

2 (q,k�q)Plin(|k�q|)]Plin(q) .

(16)
For q ⌧ k it reduces to (??). Incidentally, this coincides with

1

2

Z

q⌧k

d3q

(2⇡)3
P�1

lin
(q) h�q��q�k��ki ,

as expected from the remark after (??).
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FIG. 3. The acoustic peak in the matter correlation function
in linear theory (solid), 1-loop perturbation theory (dashed),
and simulation.

with the result of an N -body simulation6 in fig. ??. It is
seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
�q/q, by rewriting (??) as (see e.g. [? ])

D
�g(

x

2
, t)�g(�

x

2
, t)

E

�L
'

Z
d3k

(2⇡)3
eik·x

exp
h
2i�q(t) sin

⇣q · x

2

⌘q · k

q2

i
h�g(k, t)�g(�k, t)i .

(19)

As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using hexp(i')i = exp(�

⌦
'2

↵
/2)

for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around

6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h�3Mpc3. The
matter density parameter is ⌦m = 0.272, the tilt ns = 0.967 and
the normalization �8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.

�(x) ⌘
⇢(x)� ⇢̄

⇢̄
(9)

�(x) =

Z
d3k

(2⇡)3
�ke

ik·x (10)

h�k�k0i = (2⇡)3�D(k + k0)P (k) (11)

@i@j� (12)

�2R ⇠
1

2⇡2

Z 1/R

0
k2dk Plin(k) ⇠ 1 (13)

�2v =
1

6⇡2

Z 1/R

0
k2dk

Plin(k)

k2
⇡ 36 Mpc2/h2

 ⇠ @� ⇠
@

@2
� (14)

2

Displacements can be large compared to the nonlinear scale

new parameter
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ture are not absent. The presence of this feature is the
cause for the common wisdom that SPT does not work
for the correlation function. As the good performance of
the IR-resummed EFT proves, the failure is not related
to the high-k behavior of the perturbation theory but
to the missing non-perturbative treatment of motions.
One can indeed see that the IR-resummed EFT provides
a good description of the correlation function down to
10 h�1Mpc separations [? ].

Another feature of fig. ?? that is worth emphasizing is
the shift of the peak compared to the linear correlation
function. This shift is expected to be due to corrections
to ⇠̃g of order ⌃2⇠0g/`BAO, which are smaller than the
broadening e↵ects by a factor of �/`BAO [? ]. They
are not entirely fixed by symmetries since the cross cor-
relation between a displacement and other nonuniversal
e↵ects — e.g. arising from living in an over dense re-
gion — caused by a long wavelength mode contributes at
the same level. Nevertheless, they can be calculated in
perturbation theory and are included, to leading order,
in the 1-loop result, which predicts the position of the
peak reasonably well. On the other hand, the BAO re-
construction schemes, to be discussed below, reproduce
the original peak by virtue of undoing the displacements
caused by the long modes which also eliminates the above
mentioned cross correlations.

For comparison, we have also plotted in fig. ?? the
Zel’dovich correlation function, which is known to give
a relatively accurate description of the BAO spread. We
will next argue that the success of the Zel’dovich approx-
imation is because it can be formulated as (??).

Zel’dovich approximation.— The matter correlation
function can be related to the correlation function of the
relative displacement �s(z) of two points with initial
(Lagrangian) separation z:

1+⇠(x) =

Z
d3k

(2⇡)3
eik·x

Z
d3ze�ik·z

D
e�k·�s(z)

E
. (23)

In the Zel’dovich approximation, �s is replaced by its
linear expression, and the above expectation value is triv-
ially expressed in terms of the variance

Aij(z) =
⌦
�si(z)�sj(z)

↵

=

Z
d3q

qiqj

q4
Plin(q) sin

2

⇣q · z

2

⌘
.

(24)

Let us define Zel’dovich power spectrum as the result of
the inner integral in (??) at k 6= 0:

Pz(k) =

Z
d3ze�ik·ze�

1

2
Aij

(z)kikj

, (25)

which in the presence of the BAO feature contains an
oscillating component Pw

z (k). This can be approximated
by the product of a non-smoothed piece times a broad-
ening factor, as in (??): Define Aij

S (z,⇤), and Aij
L (z,⇤)

by the same integral as in (??), but taken, respectively,

linear

IR-resummed linear

IR-resummed 1-loop

Zel'dovich
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FIG. 5. Various theoretical approximations to the acoustic
peak in the correlation function as well as simulation mea-
surements. Solid: linear, dashed: IR-resummed linear, dot-
dashed: IR-resummed 1-loop, and dotted: Zel’dovich.

over short modes q > ⇤, and long modes q < ⇤. So we
have

Aij(z) = Aij
S (z,⇤) +Aij

L (z,⇤). (26)

A Zel’dovich power spectrum in the absence of the long
modes Pz,S(k,⇤), where ⇤ ⌧ k, can now be defined by

replacing Aij
! Aij

S in (??). This is the analog of the
last factor in (??): it contains the full nonlinear e↵ect of
the short modes in the Zel’dovich approximation, but no
long modes whatsoever.
Consider now the full Pz(k). The integral in (??) is

dominated by z = O(1/k), and, if k is in the support of
Pw
z (k), by z = ±`BAOk̂+O(1/k). The second contribu-

tion is what we called Pw
z (k). Here, Aij

L (z) is first of all
appreciable, and second, it can be approximated to be a
constant given by its value at z = `BAOk̂ to yield

Pw
z (k) ⇡ e�

1

2
Aij

L (`BAOk̂,⇤)kikj

Pw
z,S(k,⇤)

⇡ e�⌃
2

⇤
k2

Pw
z,S(k,⇤).

(27)

The second equality holds up to terms suppressed by
�/`BAO. Replacing ⇤ ! ✏k results in the desired ana-
log of (??).
Hence, the Zel’dovich approximation, despite being a

crude model of short scale dynamics, gives an accurate
description of BAO broadening by taking into account
the leading displacement caused by all longer wavelength

Baldauf, Mirbabayi, MS, Zaldarriaga (2015)

Senatore, Zaldarriaga (2014)

Vlah, Seljak, Chu, Feng (2015)

Blas, Garny, Ivanov, Sibiryakov (2016)

Senatore, Trevisan (2017)

Infrared resummation

Large displacements can be resummed,

for galaxies as well

5

r ⇡ `BAO

⇠̃g(x) '

Z
d3k

(2⇡)3
eik·xe�⌃

2

✏kk
2

h�g(k, t)�g(�k, t)i✏ . (20)

To write the exponent in the above form, we have used
the fact that r2

⇡ @2
r [and therefore k2 ⇡ (x̂ · k)2] up to

corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power Pw

g (k),
though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
value on the r.h.s. indicates that it should be evalu-
ated in the absence of modes with momentum q smaller
than ✏k, though it contains all short scale nonlinearities.
Within a perturbative framework, it is possible to include
dynamical e↵ects of the long modes, as well as their non-
Gaussianity by writing more complicated expressions (see
below).

To get an idea of how well (20) performs, we set
�g = � and approximate the exclusive expectation value
in the integral first by the linear matter power spectrum,
and then by the 1-loop perturbation theory result. The
first approximation underestimates the broadening by ne-
glecting short scale nonlinearities and therefore predicts
a slightly sharper peak.

Let us discuss the 1-loop approximation in more de-
tails to see how (20) can be used to improve perturbative
results. Two points have to be kept in mind: (i) The
broadening is only relevant for the acoustic peak, hence
the exponential broadening in (20) multiplies Pw

✏ (k). (ii)
Replacing Pw

✏ (k) with the 1-loop power spectrum double-
counts the e↵ect of the long modes since the 1-loop re-
sult already contains ⌃2

✏kk
2Pw

lin
(k) [c.f. (18)]. Hence in

this context the infra-red resummed version of the 1-loop
power spectrum presented in [7] can be simplified and
written as:

P̃ (k) = Pnw
lin

(k) + Pnw
1�loop

(k)

+e�⌃
2

✏kk
2

(1 + ⌃2

✏kk
2)Pw

lin
(k) + e�⌃

2

✏kk
2

Pw
1�loop

(k),

(21)

where the first line contains just the smooth part of the
power spectrum.7 When considering loop integrals with
large internal momenta, one should allow for the possi-
bility of higher derivative corrections to the dark matter
equations of motion in an E↵ective Field Theory (EFT)
framework [9]. These corrections compensate for the er-
ror made in treating the short-scale modes as a perfect
fluid. Therefore, the EFT 1-loop power spectrum di↵ers
from (16) by one such correction:

P1�loop(k) = P13(k) + P22(k)� 2R2k2Plin(k), (22)

where R (also known as speed of sound) is chosen to be
1.8 h�2Mpc2 in order to obtain 1% agreement with the

7 In practice, Pnw
1�loop

can be obtained by substituting Plin(k) with

its no-wiggle part in the loop integrals (16) since Pw
lin

/Pnw
lin

⌧ 1.
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FIG. 4. The ratio of various theoretical approximations to the
power spectrum to the simulation result. Solid: IR-resummed
(21), short-dashed: 1-parameter 1-loop EFT (22), dot-dashed:
0-parameter 1-loop EFT (22) with R = 0, and long-dashed:
linear. The gray shaded region on the IR-resummed EFT
curve gives the statistical error.

simulation results up to kmax = 0.3hMpc�1 (see fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1hMpc�1. The exact value of
R is irrelevant for the shape of the acoustic peak.
The above resummation formula (21) can be straight-

forwardly extended to any order in perturbation theory
and to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the lead-
ing dynamical e↵ect of the long modes on short modes is
also taken into account. The comparison between the IR-
improved power spectrum (21), and the original 1-loop
result (22) can be seen in fig. 4. The IR-resummation
clearly reduces the residual wiggles in the EFT predic-
tion and can thus increase the range over which the the-
ory agrees with simulations, as was pointed out in [7].
For the correlation function, the broadened acoustic

peak resulting from the IR-resummed linear and 1-loop
power spectra is shown together with the initial peak in
fig. 5. Although the first approximation does not fully
capture the smoothing of the peak seen in the data, it
shows that indeed most of the spread is caused by the
bulk motions.
Without resummation the 1-loop EFT (or SPT) power

spectra result in a spurious double-peaked feature at the
BAO scale similar to the one shown in fig. 3. This is
because they only include ⌃2

✏k⇠
00(r) while higher deriva-

tive terms 1/n!⌃2n
✏k ⇠

(2n)(r) that partially cancel this fea-

5
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⇠̃g(x) '

Z
d3k

(2⇡)3
eik·xe�⌃

2

✏kk
2

h�g(k, t)�g(�k, t)i✏ . (20)

To write the exponent in the above form, we have used
the fact that r2

⇡ @2
r [and therefore k2 ⇡ (x̂ · k)2] up to

corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power Pw

g (k),
though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
value on the r.h.s. indicates that it should be evalu-
ated in the absence of modes with momentum q smaller
than ✏k, though it contains all short scale nonlinearities.
Within a perturbative framework, it is possible to include
dynamical e↵ects of the long modes, as well as their non-
Gaussianity by writing more complicated expressions (see
below).

To get an idea of how well (20) performs, we set
�g = � and approximate the exclusive expectation value
in the integral first by the linear matter power spectrum,
and then by the 1-loop perturbation theory result. The
first approximation underestimates the broadening by ne-
glecting short scale nonlinearities and therefore predicts
a slightly sharper peak.

Let us discuss the 1-loop approximation in more de-
tails to see how (20) can be used to improve perturbative
results. Two points have to be kept in mind: (i) The
broadening is only relevant for the acoustic peak, hence
the exponential broadening in (20) multiplies Pw

✏ (k). (ii)
Replacing Pw

✏ (k) with the 1-loop power spectrum double-
counts the e↵ect of the long modes since the 1-loop re-
sult already contains ⌃2

✏kk
2Pw

lin
(k) [c.f. (18)]. Hence in

this context the infra-red resummed version of the 1-loop
power spectrum presented in [7] can be simplified and
written as:

P̃ (k) = Pnw
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(k) + Pnw
1�loop

(k)

+e�⌃
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✏kk
2

(1 + ⌃2

✏kk
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✏kk
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(k),

(21)

where the first line contains just the smooth part of the
power spectrum.7 When considering loop integrals with
large internal momenta, one should allow for the possi-
bility of higher derivative corrections to the dark matter
equations of motion in an E↵ective Field Theory (EFT)
framework [9]. These corrections compensate for the er-
ror made in treating the short-scale modes as a perfect
fluid. Therefore, the EFT 1-loop power spectrum di↵ers
from (16) by one such correction:

P1�loop(k) = P13(k) + P22(k)� 2R2k2Plin(k), (22)

where R (also known as speed of sound) is chosen to be
1.8 h�2Mpc2 in order to obtain 1% agreement with the

7 In practice, Pnw
1�loop

can be obtained by substituting Plin(k) with

its no-wiggle part in the loop integrals (16) since Pw
lin

/Pnw
lin

⌧ 1.
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FIG. 4. The ratio of various theoretical approximations to the
power spectrum to the simulation result. Solid: IR-resummed
(21), short-dashed: 1-parameter 1-loop EFT (22), dot-dashed:
0-parameter 1-loop EFT (22) with R = 0, and long-dashed:
linear. The gray shaded region on the IR-resummed EFT
curve gives the statistical error.

simulation results up to kmax = 0.3hMpc�1 (see fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1hMpc�1. The exact value of
R is irrelevant for the shape of the acoustic peak.
The above resummation formula (21) can be straight-

forwardly extended to any order in perturbation theory
and to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the lead-
ing dynamical e↵ect of the long modes on short modes is
also taken into account. The comparison between the IR-
improved power spectrum (21), and the original 1-loop
result (22) can be seen in fig. 4. The IR-resummation
clearly reduces the residual wiggles in the EFT predic-
tion and can thus increase the range over which the the-
ory agrees with simulations, as was pointed out in [7].
For the correlation function, the broadened acoustic

peak resulting from the IR-resummed linear and 1-loop
power spectra is shown together with the initial peak in
fig. 5. Although the first approximation does not fully
capture the smoothing of the peak seen in the data, it
shows that indeed most of the spread is caused by the
bulk motions.
Without resummation the 1-loop EFT (or SPT) power

spectra result in a spurious double-peaked feature at the
BAO scale similar to the one shown in fig. 3. This is
because they only include ⌃2

✏k⇠
00(r) while higher deriva-

tive terms 1/n!⌃2n
✏k ⇠

(2n)(r) that partially cancel this fea-

PT in tidal fields, nonperturbative in displacements
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New energy component in the early universe that accelerates

the expansion and changes the sound horizon can change H0

Early dark energy

Populin, Smith, Karwal, Kamionkowski (2018)
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FIG. 13. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + BOSS
FS+BAO data. We show the results obtained using the standard FS+BAO likelihood (in blue) and the EFT-based likelihood
(in red). For reference, we also display the constraints from the Planck 2018 primary CMB data alone (TT+TE+EE), obtained
in [1]. The gray band shows the H0 measurement from SH0ES, for comparison. The dark-shaded and light-shaded contours
mark 68% and 95% confidence intervals, respectively.
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FIG. 7. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + mock
Euclid/DESI likelihood, compared to those from Planck + BOSS data.

data. Second, they rely on a simplified “compressed”
redshift-space galaxy power spectrum likelihood that ig-
nores the matter power spectrum shape information and
implicitly assumes standard early-universe physics.

The impact of the galaxy clustering and weak lens-
ing data on the EDE constraints was recently studied
in Refs. [1] and [86]. Hill et al. (2020) [1] first showed
that the primary CMB data alone does not reveal signif-
icant evidence for the EDE model. Moreover, the con-
straints on the EDE model strengthen after taking into
account the data from photometric surveys. The “walk-
ing barefoot” analysis of Ref. [1], based on all available
cosmological datasets without SH0ES, yielded an upper
limit fEDE < 0.060 (95%CL), significantly lower than the
value fEDE ⇡ 0.1 needed to resolve the Hubble tension.
Thus, the addition of the LSS data rules out the EDE
model as a resolution to the Hubble tension.

Chudaykin et al. (2020) [86] claimed that the photo-
metric LSS data does not rule out the EDE model if the
` > 1000 region of the Planck power spectra are discarded
and replaced with the SPTPol measurements [87]. This
was motivated by the presence of the so-called “lensing
anomaly” in the Planck high-` data. The significance of
this anomaly is 2.8� [3], which still makes it compatible
with a statistical fluctuation, and no systematic has been
identified as a culprit despite significant dedicated anal-
ysis [88, 89]. Thus, we believe that the presence of this
mild tension does not give a su�ciently strong reason to
discard the Planck high-` data, which has more statistical
power than the SPTPol measurement. It is also worth
noting that ⇤CDM does not provide a very good fit to
the SPTPol power spectra (PTE = 0.017), and there are
mild internal parameter tensions within the SPTPol data
set (see Sec. 8 of [87]).
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All in all, our final model for the galaxy power spectra

and bispectra in redshift space is given by

P (k) = PG(k) + fNL

✓
P12(k) +

2b⇣Z1(k)k2

k
2
NL

P11(k)

T (k)

◆
,

B(k1,k2,k3) = BG(k1,k2,k3)

+ fNLZ1(k1)Z1(k2)Z1(k3)B111(k1, k2, k3) ,

(12)

where PG and BG are the standard Gaussian power

spectrum and bispectrum models [26, 58]. In practice,

we compute the Legendre redshift-space multipoles P`

(` = 0, 2, 4) of the galaxy power spectrum and use the

angle-averaged (monopole) bispectrum. We also imple-

ment IR resummation in redshift space [59–64] (to ac-

count for long-wavelength displacement e↵ects) and the

Alcock-Paczynski e↵ect [65] (to account for coordinate

conversions [33]).

Our model has 14 nuisance parameters: 13 standard

bias parameters and counterterms of Gaussian redshift-

space power spectra and bispectra (present in previous

analyses), plus the scale-dependent PNG bias b⇣ (10). ,

Data and Analysis — We use the twelfth data release

(DR12) [66] of BOSS. The data is split into two redshift

bins with e↵ective means z = 0.38, 0.61, in each of the

Northern and Southern galactic caps, resulting in four in-

dependent data chunks. The survey contains ⇠ 1.2⇥ 106

galaxy positions with a total volume of 6 (h�1Gpc)3.

From each chunk, we use the power spectrum multipoles

(` = 0, 2, 4) for k 2 [0.01, 0.17)hMpc�1, the real-space

power spectrum Q0 for k 2 [0.17, 0.4)hMpc�1 [67], the

redshift-space bispectrum monopoles for triangle config-

urations within the range of ki 2 [0.01, 0.08)hMpc�1 (62

triangles), and the BAO parameters extracted from the

post-reconstructed power spectrum data [68], as in [27].

The power spectra and bispectra are measured with the

window-free estimators [41, 42]. The covariances for each

data chunk are computed from a suite of 2048 MultiDark-

Patchy mocks [69].

We perform the full-shape analysis of the redshift clus-

tering data following the methodology of [27, 33, 34, 68].

We implement the complete theory model for the power

spectra and bispectra of galaxies in redshift space in

an extension of the CLASS-PT code [51] 7 that includes

7 Code available at github.com/Michalychforever/CLASS-

FIG. 1. Marginalized constraints on parameters

(f equil
NL , f

ortho
NL ) from the BOSS data obtained in the conser-

vative baseline analysis (BOSS DR12 (B), gray), and in the

aggressive analysis (BOSS DR12 (A), blue). We also show

results from the full Nseries simulation suite (red), whose

volume is 40 times larger than BOSS. Dashed lines indicate

f
equil
NL = 0, fortho

NL = 0.

all non-Gaussian corrections described above (computed

using the FFTlog approach [70]). We consistently re-

compute the shape of these corrections as we scan over

di↵erent cosmologies in a Markov Chain Monte Carlo

(MCMC) analysis. Up to additional NG contributions,

our analysis is identical to [27].

In our baseline analysis we fix the baryon density to

the BBN measurement [71], the primordial power spec-

trum tilt to the Planck best-fit value [43], and the neu-

trino mass to the minimal value allowed by oscillation

experiments
P

m⌫ = 0.06 eV. We vary the physical

dark matter density !cdm, the reduced Hubble param-

eter h, the amplitude of the primordial scalar fluctua-

tions ln(1010As), and (f equil
NL , f

ortho
NL ) within flat infinitely

wide priors. We use the same priors for nuisance param-

eters as [27]. We also marginalize over the linear PNG

bias, b⇣ = 1.686 ·
18
5 (b1 � 1)b̃⇣ within a Gaussian prior

PT, with custom MontePython likelihoods available at

github.com/oliverphilcox/full shape likelihoods.

PNG in single-field inflation

Cabass, Ivanov, Philcox, MS, Zaldarriaga (2022)
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A fraction of DM is exotic
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On scales smaller than de Broglie wavelength, axion DM 
does not cluster
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Figure 14: Joint posterior distributions for an axion with a mass of 10�32 eV for three
experimental setups. We note an improvement on the constraint on the axion fraction when
breaking the degeneracy with H0 present with the CMB data. The gray shaded area represent
the confidence interval for h from the SH0ES measurement [81].

Figure 15: 68% (dark-colored) and 95% (light-colored) confidence level bounds on the axion
density from the CMB data, galaxy clustering and the combined measurements.

prior favours a higher value of As which is slightly degenerate with the axion fraction at
that mass as shown in Fig. 16. Another contributing factor is that the CMB prior does not
constrain the axion fraction as well as for the axion masses below 10�25 eV. Performing a
joint likelihood analysis rather than imposing a prior on the cosmological parameters may
allow for stronger constraints for this mass bin and is left for future work. We note however
that galaxy clustering measurements alone improve existing constraints on the axion fraction
at that mass by over a factor of 4.5 (see Table 3).
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Laguë, Bond, Hložek, Rogers, Marsh, Grin (2021)

Rogers et. al. (2023)



Beyond CDM - DM long range forceΛ

Additional long-range force 
mediated by a massless scalar

Appears as “modified gravity” 
for DM

Bottaro, Castorina, Costa, Redigolo, Salvioni (2023)


