Proper elements of near-Earth asteroids: theory, applications, and new results

Marco Fenucci
Deimos Space - ESA NEO Coordination Centre (https://neo.ssa.esa.int/)

Email: marco.fenucci@ext.esa.int

Table of contents

- Introduction
- Proper elements of NEAs
- Non-resonant case
- Resonant case
- Secular resonances in the NEA region
- Parent bodies of meteorites

Introduction

Proper elements are quasi-integral of motion of the N -body problem

Methods of computation:

- Analytical methods (e.g. Hirayama 1918, Kozai 1962, Milani \& Knežević 1990, 1992, 1994)
- Semi-analytical methods (e.g. Williams 1969, 1979, Lemaitre \& Morbidelli 1994)
- Synthetic methods (Knežević \& Milani 2000, 2003)

Introduction

Secular resonances in the main belt

g: frequency of $\boldsymbol{\sigma}$
\boldsymbol{s} : frequency of $\boldsymbol{\Omega}$
Linear resonances: $\mathrm{g}-\mathrm{g}_{p}=0$ or $\mathrm{s}-\mathrm{s}_{p}=0$
Non-linear resonances: libation of $\sigma=$ combination of $\boldsymbol{\sigma}$ and $\boldsymbol{\Omega}$ fulfilling the D'Alembert rules

Introduction

Identification of asteroid families

Typically done in the proper elements space using the metric:

$$
\mathrm{d}=n \mathrm{na}_{\mathrm{p}} \sqrt{\frac{5}{4}\left(\frac{\delta \mathrm{a}_{\mathrm{p}}}{\mathrm{a}_{\mathrm{p}}}\right)^{2}+2\left(\delta \mathrm{e}_{\mathrm{p}}\right)^{2}+2\left(\delta \sin \left(\mathrm{i}_{\mathrm{p}}\right)\right)^{2}}
$$

Catalogues:

- https://newton.spacedys.com/astdys/
- http://asteroids.matf.bg.ac.rs/fam/

Part 1: Proper elements of NEAs

Proper elements of NEAs

Near-Earth Asteroids (NEAs) are objects with $\mathrm{q}<1.3 \mathrm{au}$.

NEAs can cross the orbits of planets!
Problems in proper elements computation:

- Orbit crossings cause divergence of series
- Orbit crossings cause divergence of quadratures
- Close encounters with planets shorten the Lyapunov time

Proper elements of NEAs

Kozai secular model:

$$
\mathcal{H}=\frac{\kappa^{2}}{(2 \pi)^{2}} \sum_{i=1}^{N} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\mu_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|} \mathrm{d} \ell \mathrm{~d} \ell_{i}
$$

With planets on circular orbits, the Delaunay elements L, Z are constant, the system has 1 DoF

Proper elements: $e_{\min }, e_{\max }, i_{\text {min }}, i_{\max }$
Proper frequencies: s (of Ω) and g (of $\boldsymbol{\Pi}$)

Proper elements of NEAs

Example: Bennu

> Proper elements:
> $e_{\text {min }}=0.2033$
> $e_{\max }=0.2181$
> $i_{\min }=3.967$
> $i_{\max }=6.090$

Proper frequencies:
$\mathrm{g}=-4.776$ arcsec/yr
$\mathrm{s}=-51.016$ arcsec/yr

Number of crossings:
Venus: 0
Earth: 4
Mars: 0
Jupiter: 0

Proper elements of NEAs: mean-motion resonances

Motivations:

- Many NEOs are in a MMR
- MMRs may significantly affect the dynamics
- No theory available for proper elements for resonant NEAs

Goals:

- Define proper elements for resonant NEAs
- Understand the importance of MMR in the long term dynamics of NEAs

Proper elements of NEAs: mean-motion resonances

Model:

- Circular restricted N-body problem
- κ Gauss constant
- μ_{i} masses of the planets
- $\varepsilon=\mu_{5}$ small parameter

Delaunay variables:

$$
\left\{\begin{array} { l }
{ L = \kappa \sqrt { a } } \\
{ G = L \sqrt { 1 - e ^ { 2 } } , } \\
{ Z = G \operatorname { c o s } i , }
\end{array} \quad \left\{\begin{array}{l}
\ell=M \\
g=\omega \\
z=\Omega
\end{array}\right.\right.
$$

Hamiltonian:

$$
\widetilde{\mathcal{H}}=\frac{-\frac{\kappa^{4}}{2 L^{2}}}{\mathcal{H}_{0}}+\underset{\text { Extended space }}{\sum_{j=1}^{8} \mathbf{n}_{j} L_{j}}+\varepsilon\left[\begin{array}{|c}
\varepsilon\left[-\kappa^{2} \sum_{j=1}^{8} \frac{\mu_{j}}{\mu_{5}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{j}\right|}-\frac{\mathbf{r} \cdot \mathbf{r}_{j}}{\left|\mathbf{r}_{j}\right|^{3}}\right)\right] \\
\mathcal{H}_{1}
\end{array}\right.
$$

Proper elements of NEAs: mean-motion resonances

Assumption: $h: h_{p}$ MMR with the p-th planet, critical argument

$$
\sigma=h_{\ell+\omega+\Omega}^{\stackrel{\lambda}{\omega} \ell_{p}+h_{p}+\Omega_{p}}-\frac{\lambda_{p}}{\omega+\left(h-h_{p}\right)} \underset{\omega}{\varpi}
$$

Resonant variables (from Saillenfest et al. 2016):

$$
\left\{\begin{array} { l }
{ \Sigma = \frac { L } { h } } \\
{ \Gamma = h L - h _ { p } L _ { p } } \\
{ U = G - \frac { h } { h _ { p } } L } \\
{ V = Z - \frac { h } { h _ { p } } L }
\end{array} \quad \left\{\begin{array}{l}
\sigma=h \lambda-h_{p} \lambda_{p}-\left(h-h_{p}\right) \varpi \\
\gamma=c \ell+c_{p}\left(\varpi-\ell_{p}\right) \\
u=\omega \\
v=\Omega
\end{array}\right.\right.
$$

Semi-secular Hamiltonian:

$$
\left.\mathcal{K}=\begin{array}{|c}
\mathcal{K}_{0} \\
-\frac{\kappa^{4}}{2(h \Sigma)^{2}}-\mathbf{n}_{p} h_{p} \Sigma \\
\mathcal{K}_{0}
\end{array}+\varepsilon\left[\frac{\kappa^{2}}{\mu_{5}} \sum_{\substack{j=1 \\
j \neq p}}^{N} \frac{\mu_{j}}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{-1}{\left|\mathbf{r}-\mathbf{r}_{j}\right|} \mathrm{d} \ell \mathrm{~d} \ell_{j}\right]+\frac{\kappa^{2}}{\mu_{5}} \frac{\mu_{p}}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\mathbf{r} \cdot \mathbf{r}_{p}}{\left|\mathbf{r}_{p}\right|^{3}}-\frac{1}{\left|\mathbf{r}-\mathbf{r}_{p}\right|}\right) \mathrm{d} \gamma\right]
$$

Remark: crossing singularity is treated as in Gronchi \& Tardioli 2013

Proper elements of NEAs: mean-motion resonances

Proper elements computation

(1) Compute initial elements for the semi-secular Hamiltonian

- Propagate the osculating orbit for short time
- Filter out short periodic oscillations ($P \sim 200 \mathrm{yr}$)
(2) Propagate the semi-secular dynamics for 200 ky
(3) Filter out short periodic oscillations ($P \sim 10 \mathrm{ky}$)
(4) Determine proper frequencies $s, g-s$ of Ω, ω
(5) Compute $e_{\max }, e_{\min }, i_{\max }, i_{\min }$

Proper elements of NEAs: mean-motion resonances

Object: (5381) Sekhmet - 2:3V MMR - V/E crosser - $2 \pi J$ constant - different res. and non-res. dynamics

Part 2: Secular resonances

Secular resonances in the NEA region

Motivation

The location of the secular resonances in the NEA region are not determined

Method of computation:

1. $F i x i_{0}$ and define a grid in $\left(a, e_{0}\right)$
2. Compute s and g-s over the points of the grid
3. Plot the level curves corresponding to

$$
g-g_{j}=0 \text { and of } s-s_{j}=0
$$

Planet	$g\left({ }^{\prime \prime} \mathrm{yr}^{-1}\right)$	$s\left({ }^{\prime \prime} \mathrm{yr}^{-1}\right)$
Venus	7.453	-7.06
Earth	17.368	-18.848
Mars	17.916	-17.751
Jupiter	4.257482	0.0
Saturn	28.2449	-26.347841

Table: Proper frequencies of planets from Laskar et al. 2011

Secular resonances in the NEA region: fixed inclination

Secular resonances in the NEA region: fixed inclination

Secular resonances in the NEA region

Conclusions and consequences

- Secular resonances location determined in the NEA region for the first time, for any value of eccentricity and inclination
- All the secular resonances appear well inside the NEA region
- Resonances with Venus, Earth, Mars, Jupiter, and Saturn (well known) may produce Sun impacting NEAs. This seems to be confirmed by recent numerical simulations [6]

Figure: Known NEAs close to a secular resonance. Proper elements catalogue: https://newton.spacedys.com/neodys/

Part 3: Parent bodies of meteorites

Parent bodies of meteorites

Motivation:

- The current paradigm says that meteorites are born in the main belt as a result of collisions, and they are transported to the Earth by Yarkovsky + MMRs
- Disruptions happen also in the NEA region, but families of NEAs are not known yet [7]

Goal:

- Understand whether some NEA could be the parent body of some known meteorite or not

Parent bodies of meteorites

List of all meteorites with an orbit:

https://www.meteoriteorbits.info/
Current number: 37

Parent bodies of meteorites

$D_{N^{\prime}}$ distance introduced in [9] based on geocentric quantities. In a geocentric frame with:

- y facing Earth motion

$$
D_{N}^{2}=\left[U_{2}-U_{1}\right]^{2}+\left[\cos \theta_{1}-\cos \theta_{2}\right]^{2}+\Delta \xi^{2},
$$

- x opposite to the direction of the Sun
- z orthogonal to the ecliptic plane

NOTE 2: Encounter conditions of NEAs from secular evolution

Parent bodies of meteorites

Searching for possible parent bodies:

1. For each meteorite we computed D_{N} over the whole population of known Earth crossing NEAs (catalogue from NEODyS)
2. We found 16 couples meteorite-NEA with $D_{N}<0.06$

NOTE: The value of 0.06 is when random associations start to be more likely

Meteorite Name	NEA	Diam. (m)	T_{J}	C	$D N$
Pribram	482488	$300-600$	3.109	0.3	0.047
Peekskill	2014KF22	$15-30$	4.444	5.9	0.041
Neuschwanstein	482488	$300-600$	3.109	0.3	0.056
Park Forest	2021WT	$30-60$	3.178	7.6	0.053
Bunburra Rockhole	2021FB	$20-40$	6.942	6.4	0.042
Jesenice	2017FZ64	$40-100$	3.736	7.8	0.055
Košice	2021NV5	$10-20$	3.234	6.8	0.049
	2019ST2	$50-120$	3.288	9.0	0.059
Križevci	2022RQ	$20-50$	4.472	7.9	0.044
	2013BR15	$30-60$	4.280	9.0	0.056
Sutter's Mill	2016SL2	$30-60$	3.327	8.7	0.050
Annama	2016RX	$20-40$	2.943	7.1	0.048
Žd'ár nad Sázavou	2005VE7	$500-1200$	3.156	0.5	0.048
Creston	2021JN2	$40-100$	5.328	7.0	0.055
Hamburg	2022UF	$10-20$	3.110	6.8	0.057
	2021PZ1	$20-40$	3.279	7.6	0.043

Table: 16 couples meteorite-NEA with $D_{N}<0.06$

Parent bodies of meteorites

Numerical simulations

- Meteorite: 5000 clones
- NEA: only nominal orbit
- Total integration time: -100 kyr
- Only gravitational model - Mercury integrator [9]

Vicinity of the objects evaluated with MOID and $\triangle V$ at MOID, using the minimum of the distance:

$$
d=\sqrt{\left(\frac{\mathrm{MOID}}{\mu(\mathrm{MOID})}\right)^{2}+\left(\frac{\Delta V}{\mu(\Delta V)}\right)^{2}},
$$

Parent bodies of meteorites

Parent bodies of meteorites

Peekskill-
Meteorit
Peekskill meteorite
Peekskill ist einer der spektakulärsten Meteoritenfille der jüngsten Vergangen heit. Bevor der Meteorit den Kofferraum
eines geparkten Autos in Peekskill (New York) durchschlug, wurde eine riesige grünliche Feuerkugel von Tausenden Augenzeugen entlang der Ostküste der USA gesehen. Videoaufnahmen di-
Feuerkugel ermöglichten Wissen-
euerkuge errmoglichten Wissen-
schaftern die Berechnung der Flugbahn des Meteoriten.
Peekskill is one of the most spectacular recent
meteorite falls; before it smashed through the eteorite falls; befor it it Pmashed througg huge greenish fireball was witnessed by thousands of people across the East Coast of
the USA. Video recordings of its descent have enabled scientists to calculate the meteorite's flight path.

New York U U
Newrork
Sis
Peekskill (нб)
NewrotivSA Rew

Parent bodies of meteorites

Results and conclusions:

- 10 meteorite-NEA association look dynamically possible
- ΔV are compatible with collisions
- Separation ages ~10 kyr ago
- Current NEA population models suggest a timescale of $\sim 10 \mathrm{kyr}$ for collisions among NEAs
- $\sim 1 / 3$ of meteorites may originate

Meteorite Name	NEA	Diam. (m)	T_{J}	C	$D N$
OPribram	482488	$300-600$	3.109	0.3	0.047
OPeekskill	2014KF22	$15-30$	4.444	5.9	0.041
ONeuschwanstein	482488	$300-600$	3.109	0.3	0.056
bPark Forest	2021WT	$30-60$	3.178	7.6	0.053
OBunburra Rockhole	2021FB	$20-40$	6.942	6.4	0.042
OJesenice	2017FZ64	$40-100$	3.736	7.8	0.055
OKošice	2021NV5	$10-20$	3.234	6.8	0.049
2019ST2	$50-120$	3.288	9.0	0.059	
OKriževci	2022RQ	$20-50$	4.472	7.9	0.044
OSutter's Mill	2013BR15	$30-60$	4.280	9.0	0.056
2016SL2	$30-60$	3.327	8.7	0.050	
OAnnama	2016RX	$20-40$	2.943	7.1	0.048
DŽd'ár nad Sázavou	2005VE7	$500-1200$	3.156	0.5	0.048
OCreston	2021JN2	$40-100$	5.328	7.0	0.055
OHamburg	2022UF	$10-20$	3.110	6.8	0.057
2021PZ1	$20-40$	3.279	7.6	0.043	

General conclusions

- Proper elements of NEAs are a fast indication of the secular dynamics
- Catalogue maintained only by NEODyS
- No catalogue for NEAs in a MMR, even detection of MMRs is not automatized
- They can be used to identify secular resonances, similar to the case main belt asteroids
- They can be used to search for parent bodies of meteorites, similar to the case of asteroid pairs
- They can be further used to search for NEAs clusters, e.g. families

