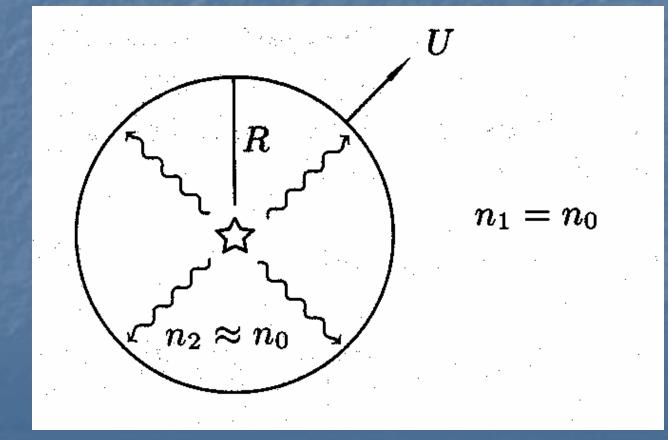
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Shock Waves: II. HII Regions + Planetary Nebulae

two stages of evolution of the HII regions:

- first stage: formation of "initial Stromgren sphere" by an ionization front


- second stage: expansion of a shock wave followed by an ionization front

first stage

- duration: few thousand years
- fast propagation of a wave of ionization
- up to an equilibrium radius R_{init} (initial Strongren sphere) ionization = recombination

(O5 star born into a region of density 100 cm⁻³)

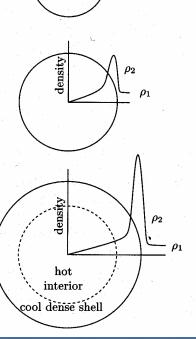
idealized first stage:

second stage

pressure of HII region > pressure of HI region

- the isothermal shock wave is formed

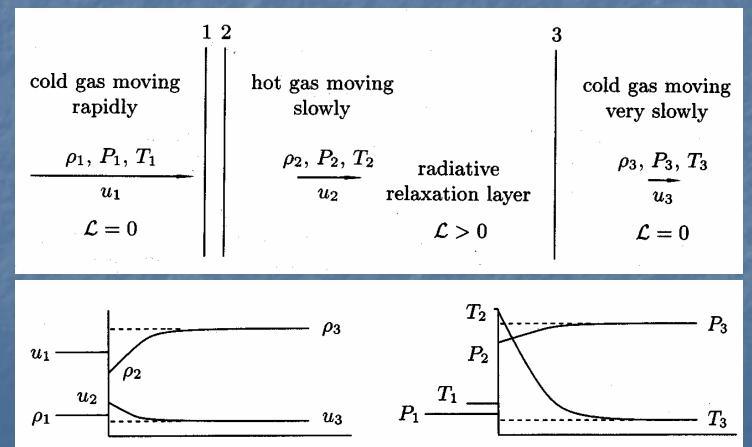
 volume of the HII region increases => its density decreases => recombination rate decreases =>


 the ionization front is formed again and follows the shock wave

isothermal shock wave

blast wave (energy conserving)

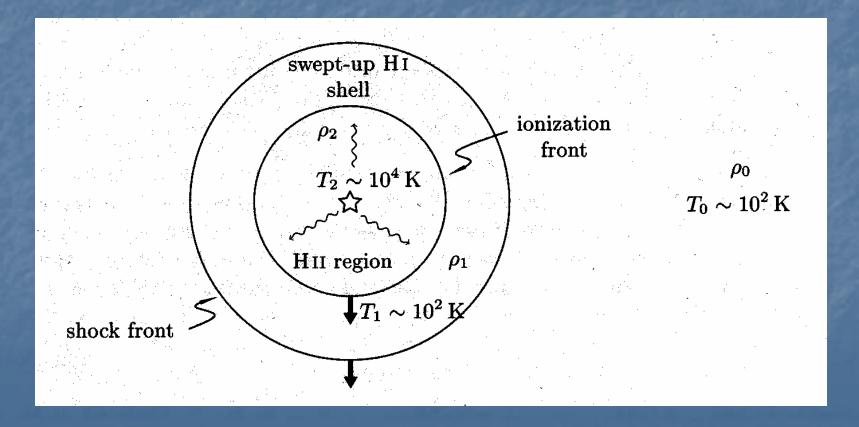
 $\begin{array}{l} \text{ shell formation} \\ (\text{radiative losses} \lesssim E) \end{array}$


snow plow (momentum conserving)

densit

 ρ_1

radiative shocks

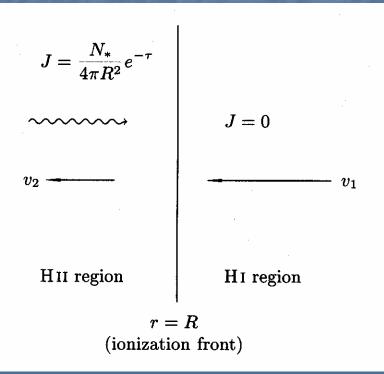


isothermal shock compression:

$\rho_2/\rho_1 \sim (Mach number)^2$

Mach number = $u_1/v_{s,T}$

idealized second stage:



 second stage
 duration: few tens million years
 up to an final equilibrium radius *R*_{final} (final Stromgren sphere) ionization = recombination +

 $V_{\rm shock\ wave} \sim 10\ {\rm km/s}$

 $R_{\text{final}} \sim 200 \text{ pc}$ (if central star does not finish its life as SN earlier!)

Ionization fronts

first expansion phase – R-type ionization fronts - R (rarefied gas in upstream region) - R-fronts - supersonic $v_1 \sim 1300$ km/s, for $\rho_2/\rho_1 = v_1/v_2$ strong R-fronts strong R (5.6 pc, 5000 years) - R-compression $\sim 8/3$ **R**-critical

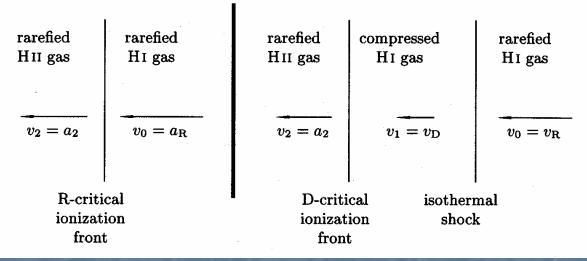
 $v_{\rm R}/a_2$

transition to D-type ionization fronts

an R-critical ionization front [] an isothermal shock + a D-type critical front

 second expansion phase – D-type ionization fronts + isothermal shock
 D (dense gas in upstream region)
 D-fronts - subsonic
 ~0.2 km/s
 - D-compression
 ~1/60

HI gas


 $\rho_2(t)$

 $ho_1(t)$

 ρ_0

isothermal

shock

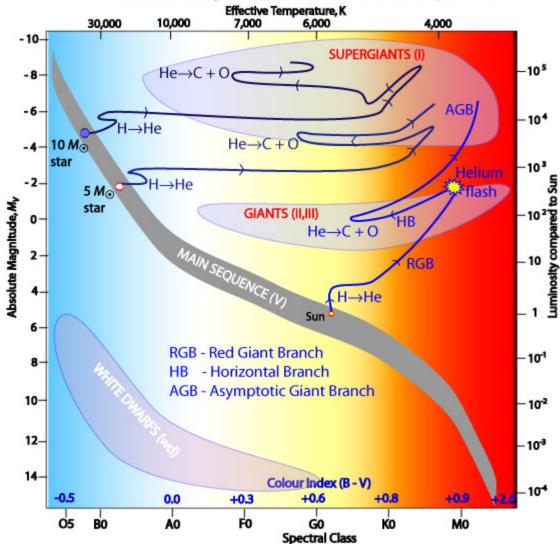
$$\rho_{2}/\rho_{1} = v_{1}/v_{2}$$

$$a_{1}^{2}/a_{2}^{2}$$
weak D
$$v_{D}/a_{2}$$

$$\rho_{2}/\rho_{1} \sim v_{1}^{2}/a_{1}^{2}$$

$$\rho_{2}/\rho_{1} \sim v_{1}^{2}/a_{1}^{2}$$

$$v_{D}/a_{2}$$


$$v_{1}/a_{2}$$

 real duration of evolution of an HII region is defined by lifetime of O5 star!
 -it is approx. 30 times less than lifetime of second expansion phase

F. Shu: "A typical HII region spends most of its life in a fully dynamic state of expansion and ends its existence as part of the debris of a supernova remnants."

Evolutionary Tracks off the Main Sequence

- asymptotic giant branch stars (AGB) progenitors of planetary nebulae (PNe)
- AGB stars: C-N-O degenerate core + mostly H (or He) reactions in a thin envelope
- AGB mass loss $10^{-5} M_{Sun}/yr$, $V_{wind} \sim 10$ km/s,
- duration of the AGB phase ~ million years
- when H envelope is completely removed, AGB phase is finished
- temperature of an exposed core increases central star of PN

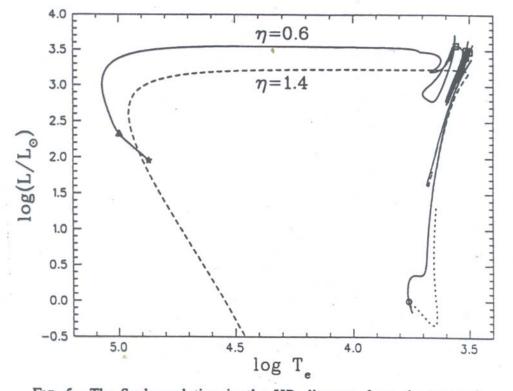
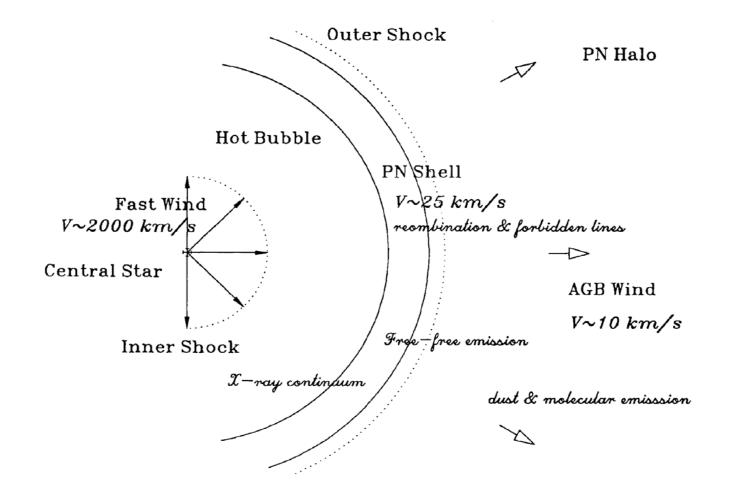
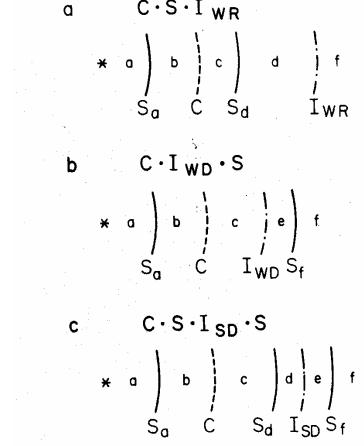



FIG. 5.—The Sun's evolution in the HR diagram, from the pre-mainsequence state to the pre-white dwarf stage. For our preferred mass-loss case (solid curve: $\eta = 0.6$), the triangle indicates the beginning of the final helium shell flash, and the star its peak, where computations were terminated. The dashed curve shows our extreme mass-loss case ($\eta = 1.4$), which leaves the RGB to become a helium white dwarf.


- PN = central star + ejected AGB material
- central stars (CS) the hottest stars in Galaxy, up to 100 000 K
- CS mass loss 10⁻⁸ M_{Sun}/yr, V_{wind} ~ 2000 km/s
- when H is exhausted, CS enters in cooling track toward WD
- the PN evolution is finished after 10 000 yr

- the interacting stellar winds model
 - two shocks:

inner (energy conserving) outer (momentum conserving – isothermal)

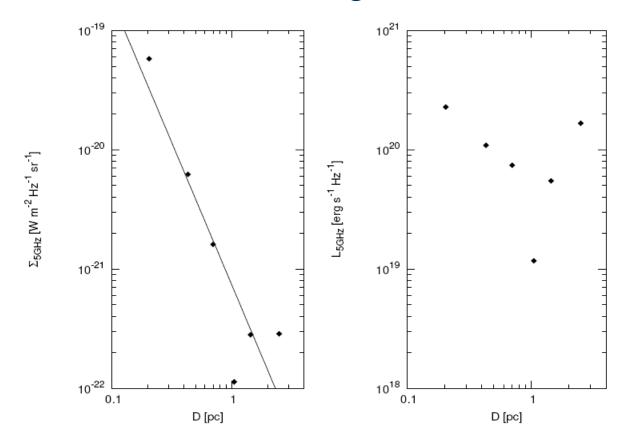
PN is HII region – we expect Ionization
 fronts
 a
 c · s · I wR

- HII regions thermal bremsstrahlung emission from medium perturbed by isothermal shock
- we derived the theoretical Σ-D relation for planetary nebulae

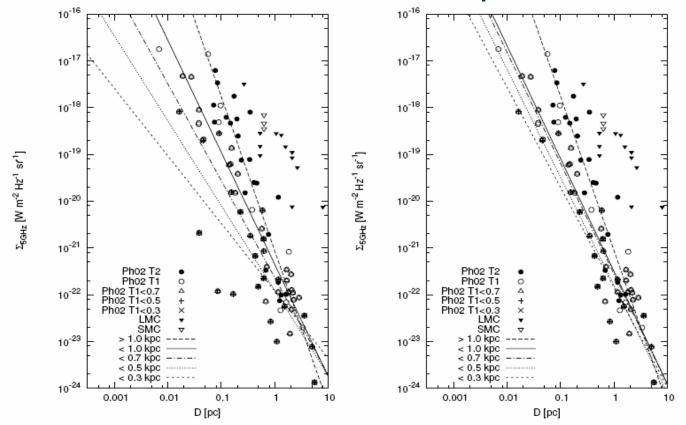
 $\Sigma \sim D^{-3}$

(density $n \sim D^{-2}$, $T = \text{const.} \sim 10\ 000\ \text{K}$) Urošević, Vukotić, Arbutina, Ilić (2007)

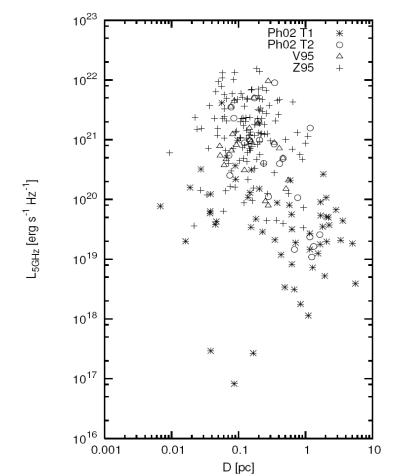
- empirical Σ -D relation for PNe
- our results show that no valid empirical correlation between the radio surface brightness and diameters of PNe
- reasons: peculiar physics and selection effects


• samples

No.	$Sample^{a}$	$\beta_{\Sigma-D}$	$r_{\Sigma-D}$	α_{L-D}	r_{L-D}	N
01	Phillips 2002 T1,T2	-2.39 ± 0.16	0.86	-0.39 ± 0.16	0.26	78
02	Phillips 2002 T1	-2.22 ± 0.15	0.89	-0.22 ± 0.15	0.19	56
03	Phillips 2002 T2	-3.29 ± 0.33	0.91	-1.29 ± 0.33	0.66	22
04	Phillips 2002 T1 < 0.3	-1.44 ± 0.39	0.83	0.56 ± 0.39	0.50	8
05	Phillips 2002 T1 <0.5	-1.81 ± 0.30	0.81	0.19 ± 0.30	0.14	22
06	Phillips 2002 T1 <0.7	-2.07 ± 0.19	0.86	-0.07 ± 0.19	0.056	44
07	Phillips 2002 T1,T2 †	-2.56 ± 0.13	0.91	-0.56 ± 0.13	0.44	75
08	Phillips 2002 T1 †	-2.40 ± 0.11	0.95	-0.40 ± 0.11	0.44	53
09	Phillips 2002 T1 <0.3 †	-2.13 ± 0.43	0.91	-0.13 ± 0.43	0.14	7
10	Phillips 2002 T1 <0.5 †	-2.30 ± 0.21	0.93	-0.30 ± 0.21	0.32	19
11	Phillips 2002 T1 < 0.7 †	-2.36 ± 0.13	0.94	-0.36 ± 0.13	0.40	41
12	Van de Steene & Zijlstra 1995	-2.41 ± 0.34	0.84	-0.41 ± 0.34	0.26	23
13	Zhang 1995	-2.17 ± 0.14	0.80	-0.17 ± 0.14	0.10	132
14	USNO-PN	-2.38 ± 0.56	0.90	0.38 ± 0.56	0.32	6


• USNO sample

Name	trigonometric parallax	S_{5GHz}	diameter
	[mas]	[mJy]	["]
NGC 7293 (036.1-57.1) NGC 6853 (060.8-03.6) NGC 6720 (063.1+13.9) A 21 (205.1+14.2) A 7 (215.5-30.8) A 24 (217.1+14.7)	$\begin{array}{c} 4.56 \pm 0.49 \\ 3.81 \pm 0.47 \\ 1.42 \pm 0.55 \\ 1.85 \pm 0.51 \\ 1.48 \pm 0.42 \\ 1.92 \pm 0.34 \end{array}$	1292^{a} 1325^{a} 384^{a} 157^{d} 305^{a} 36^{a}	660^{b} 340^{a} 60^{c} 550^{e} 760^{a} 415^{d}


• USNO *Σ-D* and *L-D* diagrams

• the Σ -D fits for 5 selected samples of PNe

These are results of collaboration by many of "us" here:

Vukotić, Arbutina, Ilić, Filipović, Bojičić, Šegan and Urošević submitted to A&A

Plans for future

plans for tomorrow the Σ-D relation for "ordinary" HII regions

plans for day after tomorrow

 development of HD and MHD codes for the evolution of SNR and PN (HII) shock waves (and fronts)

THANKS AGAIN!!