Modelovanje evolucije asteroida:
teorija naspram posmaktranja
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Modelling asteroid evolution:
theory vs observations

Seminar of the Department of Astronomy - 10 May 2022
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Why do we care about near-Earth
asteroids?

Revealing Solar System History Mitigating Impact Hazards
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Number Discovered

Near-Earth Asteroid Discoveries by Survey

All NEAs (as of 2022-May-09)

3000

2500

2000

1500

1000

500

1995

2000

2005 2010
Discovery Date

2015

—3000

—2500

—2000

—1500

—1000

—500

2020

LINEAR
NEAT
Spacewatch
LONEOS
Catalina
Pan-STARRS
NEOWISE
ATLAS
Other-US
Others



Near-Earth Asteroids Discovered
Most recent discovery: 2022-May-09
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Near-Earth Asteroids Discovered
Total per Size Bin (as of 2022-May-09)
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* Knowledge of the surface and internal properties of
NEAs is required for assessing their hazard potential
and the effectiveness of proposed mitigation
strategies , as well as for the design of lander and
sample return spacecraft missions

* Insights into the physical properties of asteroids are
required Ffor proper understanding of many
processes, including the formation of planetesimals ,
bolides in planetary atmospheres, impact cratering,
the evolution of the meteoroids parent bodies, and
many others




* Despite their great importance, knowledge of the physical
properties of most NEAs lags far behind the current rate of their
discoveries

* The asteroid surface and internal properties could often be inferred
only from the space-borne observations or the space missions

* Asteroid surfaces and internal structures are very diverse, and
knowledge derived from a limited number of asteroids typically
could not be safely applied to a large number of objects




Near Earth Asteroids:
- from detection to orbital motion prediction




Near Earth Asteroids:
- from detection to orbital motion prediction

* Orbit determination from observations
* At least three position measurements

* Problems: small arc and position
uncertainties

* Solutions: many observations + least
square fitting




Near Earth Asteroids:
orbital motion prediction

* Solution: large number of observations + least square method
* Additional problem: numerical methods have their own uncertainties




Near Earth Asteroids:
orbital motion prediction

* Solution:
large number of observations +
least square method
* Additional problem: numerical

methods have their own
uncertainties

Approximated
trajectory




Near Earth Asteroids:
orbital motion prediction

* More problems: trajectory is also a function of time!
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Perturbations of the motion:
gravitational + non-gravitational
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Depends on many non-orbital parameters, such as:

* size,
* density,
* shape,
* rotation state (obliquity and period of rotation),
* surface thermal characteristics

Problem: in most cases we do not know values of these
parameters, and in many cases we even do not know
how to model their distribution

7 *

Yarkovsky




Near Earth Asteroids:
orbital motion prediction




Demystifying near-Earth Asteroids project

* Demystifying near-Earth Asteroids (D-NEAs)

. Modeling surface thermal properties from the
ground-based data

. Asteroid densities from the combined dat



Demystifying near-Earth Asteroids project
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Yarkovsky effect in the orbital motion

Methods: model vs. observed Yarkovsky drift

(22)(a,D,p,K,C,7,P,a,e) = ($2)

Parameters: Method:
a semimajor axis e Assume distributions for all the parameters
D diameter but K
p density e Solve for K the model vs. observed
. equation
K thermal conductivity quat
. » Use a Monte Carlo method for statistical

C heat capacity :

s analysis
~ obliquity
P rotation period



Basic Yarkovsky model

Analytical Yarkovsky model from Vokrouhlicky (1998, 1999).

1. Spherical homogeneous body
2. Linearized BC in heat diffusion equation
3. Circular orbit

da
dt

= K1 COSY + K9 sin’ 8l

where k, and k, are analytic functions



Special case: super-fast rotators

Small and fast rotating asteroids
are monolithic blocks

Monolithic rocky objects have high
thermal inertia
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High thermal inertia prevent a fast
Yarkovsky drift to be achieved.
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Del Vigna et al. 2018 and
Greenberg et al. 2020 found small

objects with fast Yarkovsky drifts 0.001 001 0l 1
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Asteroid Regolith

A ST_2506694595
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ermal inertia and fast rotators

Time = 0.00 min




Thermal inertia and fast rotators

Case study: (499998) 2011 PT

Characteristics:
e H~24mag=D ~ 3b m
e P~ 11 min

e Yarkovsky effect detected by

e Del Vigna et al. 2018
e Greenberg et al. 2020
« JPL SBDB

Goal:

e Constrain the thermal conductivity
(thermal inertia)




Results of the Monte Carlo simulations

C =800 J kg ! K!

_ 0-41 e The distributions are always bimodal
20.2 e First peak in K at around
"6 0 ~7-10°Wm ! K!

e Second peak in K at around

~5.1003Wm ! K!

. 3 e P(K<01Wm K1) >0.95
log,,(1")




Semi-analytical Yarko model and thermal inertia variation

Semi-analytical Yarkovsky model . N
Tl variation (Rozitis et al 2018)

Assuming 1. and 2. the 0
instantaneous drift is (Vokrouhlicky r — F[]T
etal. 2017) where T, is the Tl at 1 au
d{l ) Assuming constant p and C, K varies
_ f}; .V as i Y
'CH ?12{1 h — h 07

Total drift:

da / I da
— = —dt
dt ). Jo dt

where K, is the conductivity at 1 au



1950 DA

1950DA: km-sized NEO, e ~0.5,g~ 0.83 au, Q ~ 2.56 au

Circular model
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1950 DA

alpha =-0.6

53.7835,357.6013,5123.6481

56.504,360.7035,5013.0414

logy(I')




Reduced Magnitude(R) (a: 9.8 G: 0.15)
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Any questions?
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