Interaction between massive stars and ISM in metal-poor galaxies

A.Yarovova^{1,2}

- 1 Sternberg Astronomical Institute, Lomonosov Moscow State University
- 2 Special Astrophysical Observatory, Russian Academy of Science

Belgrade, 28.03.2023

Plan

- Introduction
- Methods and instruments
- Studies of local galaxies, interesting results
- Peculiar nebula in NGC 4068
- Interaction between ISM and massive stars in IC 1613
- Conclusion and questions

The interaction between massive stars and the ISM in metal-poor galaxies can give rise to several astrophysical problems, including:

- Chemical enrichment
- Ionization and heating
- Galactic winds and outflows
- Stellar populations and feedback

Instruments

• 6-m telescope

Focal reducer Scorpio1/Scorpio-2:

- Long-slit spectroscopy
- Fabry-Perot interferometry
- Optical photometry

- 2.5-m telescope
- Long-slit spectroscopy
- NIR and optical photometry
- Mapper of Narrow Galaxy Lines (sessions)
- High resolution fiber echelle spectrograph
- Speckle polarimeter

Moiseev, Lozinskaya, 2012

y

MaNGaL (Mapper of Narrow Galaxy Lines)

E-mail: moisav@gmail.com, moisav@sao.ru

2020 Nov. *The result from 2.5–m telescope: tunable filter revealed an extended ionizing cone around active nucleus in the merging galaxies.*

https://www.sao.ru/hq/lsfvo/devices/mangal/index.html

Revealing the nature of peculiar nebula in NGC 4068

distance -4.36 Mpc 12+log(O/H) = 7.5 - 7.8 log(N/O) = -1.6 - -1.3

I-sigma diagram for NGC 4068

 $H_{\alpha} + HST ACS(F606W + F814W)$

Color-Magnitude diagram

Photometry from NGC, Sharina et al., 2008

Long-slit spectroscopy

6-m telescope spectrum

2.5-m telescope spectrum

Chemical composition of the nebula

What could that object be?

• Planetary nebula

(then we have to check [OIII]5007 emission line flux)

- Very close group of O stars
- Nebula ionized by massive star (BSG, WR, LBV)

(then we have to check Hell 4686 line and possible variability)

Kniazev et. al., 2005

Ciardullo et.al., 2002

CLOUDY modelling of the nebula spectrum

Constant parameters:

Filling factor -0.15Geometry - close Metallicity $-0.1 Z_{sun}$ Inner radius -3 pc

Variable parameters:

Outer radius – 4-30 pc Density – 1-2 cm^{-1} Nitrogen abundance I = 1-20 N/N_{ord}

Solar element content scaled for metallicity of NGC 4068

Nitrogen content varies (increases i times)

Spectrum of the nebula

Evolutionary tracks for Massive stars

SED of model stars

Our results

- Model WR stars built using tracks from (Grasha et. al. 2021) allow us to reproduce the main features of the spectrum, including the HeII line
- According to our models, HeII4686 is the line of a star (not of a nebula)
- The nebula is probably ionized by the radiation of a low-metal WR star with parameters T~40-50 kK, m~80 M_{sun} , L~10⁶ L_{sun} . About ~0.5 Myr ago (upper estimate) the star ejected a large amount of nitrogen in the form of a stellar wind, which led to the currently observed ratio of the emission lines of the nebula and the increased velocity dispersion in the H_{α} line

A significant number of LBVs have at least temporarily an Of/WN type spectrum indicating the presence of emission line and in particular a larger amount of nitrogen in their photosphere. The S Dor variability is the one and only clear distinction of LBVs from other massive evolved stars.

Weis, Bomans, 2020

Further studies. Search for variability.

+ one more object in UGC 8508:

Moiseev, Lozinskaya, 2012

Massive stars studies in IC 1613

12' field of star forming regions in IC 1613 from1.5-m Russian-Turkish telescope

...and we see even fainter details in H_{α}

Diagnostic diagrams

- - Photoionized regions of IC 1613
- - Models from Gutkin et.al., 2016 for metallicity Z=0.002

cWR stars in IC 1613

Armandroff, Massey, 1985

Rare WO-type star in IC 1613

Deep H_{α} image of WO nebula

Emission lines ratio

Results and discussion

- Studying ISM together with stellar population in local dwarf galaxies can reveal rare and interesting types of objects (WR and LBV stars, SNr).
- With modern instruments we can effectively find faint shells and gaseous structures and analyze state of the ISM, making conclusions about galaxy evolution, feedback effect etc.
- Applications to observations on Russian 6-m and 2.5-m telescopes are welcome ^(C)