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Domain Shift Problems in 
Astrophysics: 

Bridging the gap between 
simulated and real data with AI



Vision of the Future

               Rubin  LSST                                                              DUNE                                                             HL-LHC

              ~  20  TB / day                                        ~  30-60 PB / year (raw)                          ~ order of magnitude more data
              ~  100 PB total by DR11        ~  114x4 TB / month (raw)                     ~ 650 PB / year
                                                                                          for Supernovae detection
               (speed need for  follow ups)

~2023.                                             ~2027.                                            ~2026.

1

1              MATF Seminar | April 2023



Vision of the Future

               Rubin  LSST                                                              DUNE                                                             HL-LHC

              ~  20  TB / day                                        ~  30-60 PB / year (raw)                          ~ order of magnitude more data
              ~  100 PB total by DR11        ~  114x4 TB / month (raw)                     ~ 650 PB / year
                                                                                          for Supernovae detection
               (speed need for  follow ups)

~2023.                                             ~2027.                                            ~2026.

1

1               MATF Seminar | April 2023

● Real-time:
○ data handling,
○ decision making
○ detection of 

interesting events
○ inference

● Automated experiments
● Working with big data later 

in the process
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SIMULATED REAL

MicroBooNE 
(neutrinos)    

lllustris / Hubble 
(merging galaxies)    

All areas of Fermilab science often need to 
create model trained on simulated data, 

that also work on real detector data!

Combining Datasets

Adams et al. (2019)

Vogelsberger et al. (2014)             Hubble
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Computational constraints 
for simulations

Missing and unknown 
physics, wrong geometry, 

background levels
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Computational constraints 
for simulations

Detector problems, 
transients, errors, data 

compression

Imperfect addition of 
observational effects

Missing and unknown 
physics, wrong geometry, 

background levels

Different detectors or 
telescopes



CLASSIFYFIND AND REFINE 
FEATURES

SIMULATED 
IMAGES

+
LABELS

(NON)MERGER

find useful 
features

Regular Training

Combining Datasets
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Train the model 
on source 

dataset and find 
the decision 
boundary.
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Source Domain                  Target Domain                 Domain Alignment     

Train the model 
on source 

dataset and find 
the decision 
boundary.

New domain is 
shifted, 

learned decision 
boundary doesn’t 

work.

We need to align 
the data during 

training!

Combining Datasets
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Align data distributions in the latent space of the network by forcing the network 
to find more robust domain-invariant features.
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Combining Datasets

DOMAIN ADAPTATION
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Training 
= 

Task Loss
+ 

DA Loss
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Works on unlabeled target domain!
Can be applied to new data, no need for 

scientists to label anything.!

6               MATF Seminar | April 2023

Combining Datasets

Distance-based methods Adversarial methods

Align data distributions in the latent space of the network by forcing the network 
to find more robust domain-invariant features.

DOMAIN ADAPTATION



DANN - feature extractor + label 
predictor + domain classifier

● Gradient reversal layer - 
multiplies the gradient by a 
negative constant during the 
backpropagation.

● Results in the extraction of 
domain-invariant features.

● Only source domain images 
are labeled during training.

Ganin et al. (2016)

Domain Adversarial Neural Networks - DANNs
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From Arthur Gretton (NIPS 2016 Workshop on Adversarial Learning, Barcelona Spain)

Smola et al. (2007)
Gretton et al. (2012)Maximum Mean Discrepancy - MMD
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SIMULATED 
IMAGES

+
LABELS

OBSERVED 
IMAGES

TESTING

Testing the model

 Simulated   Observed

CLASSIFY

Domain Adaptation



Source - Illustris          Target - SDSS observations

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 

This is how the network sees the data.
2D representation of network’s latent space.

Combining Datasets
Source - Illustris           Target - SDSS observations
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Source - Illustris         
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NM

Combining Datasets
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Regular TrainingImportant regions are 
highlighted!

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 
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t. accuracy 
~50%

s. accuracy
>80%Ćiprijanović et al. 2020.

Ćiprijanović et al. 2021. 
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Source - Illustris          Target - SDSS observations

M

NM

M

NM

t. accuracy 
~80%

s. accuracy
~90%

Up to 30% increase!

Combining Datasets

10               MATF Seminar | April 2023

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 
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Scientific data pipelines will introduce inadvertent 
data perturbations:

● image compression or blurring
● noise
● data pre-processing
● detector errors
● transient phenomena …

15

Model Robustness 
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Model performance drops 
(sometimes catastrophically)

Targeted attack!
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(sometimes catastrophically)

If we perturb a single pixel, model will classify the 
object incorrectly!

Y10
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Model performance drops 
(sometimes catastrophically)

Ćiprijanović et al. 2021.
Ćiprijanović et al. 2022.

If we perturb a single pixel, model will classify the 
object incorrectly!

Old data can help!

Y10

Y1



Regular Training on Y10 data

16
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Regular Training on Y10 data
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Y1

Domain Adaptation using Y1 data

Ćiprijanović et al. 2021.
Ćiprijanović et al. 2022.



Regular Training on Y10 data
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Domain Adaptation using Y1 data

● Accuracy on both datasets 
increases (up to 23%)!

Y10 & Y1



Regular Training on Y10 data
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Domain Adaptation using Y1 data

Y10 & Y1

● Accuracy on both datasets 
increases (up to 23%)!

● Distance to the wrong class 
increases ~2.3!

● Robustness to inadvertent 
perturbations increases!
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The gap between observational datasets is much 
larger:

● Noise, PSF
● Pixel scale
● Depth of the survey
● Magnitude limit
● Perhaps different filters
● Different data distributions….

Bridging between observations - Much Harder!

SDSS to DECaLS?

How do we build something flexible enough to handle 
any kind of data distribution shifts?

We often won’t know what kind of shift we have, 
especially with new and unlabeled data!
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● Overall distribution per class can be different between 
datasets.

○ Overlapping classes should be aligned 
independently instead of aligning the entire 
data distribution.

● We can even have classes present in only one of the 
datasets - old labeled data or even new unlabeled data (so 
we won’t even know it’s there!)

○ Non-overlapping classes should not be aligned 
with anything.

Types of Dataset Shift Problems
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Use self-supervision and allow model to 
decide on its own!
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DA tests we ran:
● Two data releases from the same telescope 

○ LSST mocks Y1 and Y10
● Different surveys 

○ SDSS and DECaLS
● Wide and deep fields in the same survey 

○ SDSS wide and Stripe 82 deep field

Universal Domain Adaptation (DeepAstroUDA)
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Class labels are from Galaxy Zoo 2 & 3
(crowdsourcing labels ~10^5 volunteers).

Known classes:
Disturbed (0)
Merging (1)
Round smooth (2)
Cigar shaped smooth (3) 
Barred spiral (4)
Unbarred tight spiral (5),
Unbarred loose spiral (6)
Edge-on without bulge (7),
Edge-on with bulge (8),

Unknown anomaly class (only in DECaLS):
Strong gravitational lens (9)

Universal Domain Adaptation (DeepAstroUDA)
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Classification of known classes 

 Clustering of similar known and unknown 
samples 

 Separation of different (anomalous) 
unknown samples

Universal Domain Adaptation (DeepAstroUDA)

18               MATF Seminar | April 2023

Ćiprijanović et al. 2022.
Ćiprijanović et al. 2023.



Classification of known classes 

 Clustering of similar known and unknown 
samples 

 Separation of different (anomalous) 
unknown samples

Universal Domain Adaptation (DeepAstroUDA)

18              MATF Seminar | April 2023

0    1    2     3    4    5    6     7    8     9
Output vector p

Ćiprijanović et al. 2022.
Ćiprijanović et al. 2023.



Classification of known classes 

Universal Domain Adaptation (DeepAstroUDA)

18               MATF Seminar | April 2023

0    1    2     3    4    5    6     7    8     9

Using true and predicted labels

Output vector p            compare predicted y’ with true label y
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 Clustering of similar known and 
unknown samples 

Via self-supervision:
comparing pairs of output features 
between all samples from both domains
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0    1    2     3    4    5    6     7    8     9

 Clustering of similar known and 
unknown samples 

Via self-supervision:
comparing pairs of output features 
between all samples from both domains

Output vector p             rank order to create similarity labels

Ćiprijanović et al. 2022.
Ćiprijanović et al. 2023.
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Pushing away samples with high entropy of 
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Classes are mixed!

Universal Domain Adaptation (DeepAstroUDA)
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● Most confusion between classes is for truly morphologically similar classes, like disturbed 
and merging.

● Model is very sure about the unknown lens class - it can recognize these object look different 
than all other known classes.

Universal Domain Adaptation (DeepAstroUDA)
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● Simulation  and observations

● Increase robustness to data perturbations

● Different data releases from the same 
survey

● Different surveys

● Wide and deep fields of the same survey

Domain Adaptation to the rescue!

Ćiprija
nović e

t al. 2
021.

By Becky N.

Ćiprija
nović e

t al. 2
022.

Ćiprija
nović e

t al. 2
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Ćiprija
nović e

t al. 2
023.
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Stay tuned for applications to galaxy properties, more 
galaxy mergers, strong gravitational lensing and 
cosmology!
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Argonne, 
Oakridge,Berkeley
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A. Lewis                       G.Perdue                   D.Kafkes                         B. Nord                    N. Tran               K. Pedro 

              G. Snyder                     J. Peek

  Big thanks to all my amazing collaborators

   K. Downey                    S. Jenkins

  S. Madireddy                T. Johnston                    S. WIld

       J. Poh                A. Drlica-Wagner            D. Tanoglidis  

and many more!
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THANK YOU!

Aleksandra Ćiprijanović
(she/her/hers)

Fermilab, DSSL
aleksand@fnal.gov

MATF Seminar
April, 2023

Interested in AI/ML for Astrophysics? 
Join the Deep Skies Lab!
https://deepskieslab.com/

https://news.fnal.gov/2017/03/urban-sketchers-get-sketch-fermilab/
https://deepskieslab.com/

