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ABSTRACT

In many radiative transfer (RT) problems, the sources contain a scattering term that couples all the
specific RT equations, one for each frequency and direction, so that solving the problem means solving
the system formed by these equations. Each of them is a first-order linear differential equation with its
own initial condition assigned at a different point of the medium, which makes the solution of the
system extraordinarily difficult.

One simple way to achieve a solution is with the so-called A-iteration: sources and sinks given as a
first approximation — computation of the specific intensities from their own RT equations — computa-
tion of the scattering terms — recomputation of the sources and sinks. This scheme is straightforward,
but unfortunately in practice its convergence rate is too slow to be of value in the case of optically thick
systems.

The aim of this paper is to show that a forth-and-back approach (the natural approach to describing
sequentially the two intensities propagating along the two directions of a straight line), together with an
implicit representation of the source function in the computation of the intensities within the above iter-
ative scheme, can dramatically accelerate the convergence of the iterative process while retaining the
straightforwardness of ordinary A-iteration.

Subject headings: methods: numerical — radiative transfer

1. INTRODUCTION

It is well known that one intrinsic difficulty of non-LTE
radiative transfer (RT) problems arises from the nonlocal
coupling between the radiation field and the excitation state
of the gas: the transport (absorption and emission) coeffi-
cients depend on the specific intensity of the radiation field,
namely, on the solution itself of the RT problem. In turn,
the specific intensity at each point of the medium depends,
via the RT process, on the values of the transport coeffi-
cients over a wide range of distant points. Therefore, in
general, an iterative solution must be sought in order to
solve the global problem. Two alternative approaches can
be envisaged. Either a sequential iterative procedure can be
considered, in which the different phenomena coupled
together are tackled one by one while all the others are
assumed to be known, or, the different phenomena can be
faced simultaneously by means of the corresponding linear
formulation.

Although the transport coefficients may be assumed to be
known, at least within each step of the iterative procedure, a
further difficulty is introduced by the existence, within any
specific RT equation (one for each pair of frequency and
direction), of a scattering term that depends on the full set of
the specific intensities. Therefore, all the RT equations are
strongly coupled by the scattering term.

In some cases, such as in the well-known instance of the
two-level atom line formation problem, the source function
can be explicitly formulated in terms of a scattering integral,
and the problem, in this case linear, can be solved by using
either direct or iterative methods. Yet in many other physi-
cal problems it is not possible to write the source function
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explicitly, so the self-consistent solution of the RT and sta-
tistical equilibrium equations, which here play the role of a
scattering-like process, has to be achieved by means of an
iterative method. This is the case, for instance, with the
multilevel atom non-LTE line transfer.

The aim of this paper is to show that the convergence of
some of the iterative methods currently in use can be greatly
accelerated when we treat separately, within a forth-and-
back process, the natural two-stream representation of the
radiation field along each line.

As with the integral methods based on the A-operator, we
employ an implicit representation of the source function
when computing the mean intensity of the radiation field. In
contrast to the A-operator implicit scheme, which we might
regard as global, we may consider the implicit scheme pro-
posed here as local.

In the former, the operator A(z, 7) is equivalent to the
integral form of the RT equation: one can express the spe-
cific intensities I, ,(t), hence the frequency-integrated mean
intensity J,(t), through a linear combination of the
unknown values of the source function S(z") for all the
values 7’ of the optical depth grid.

On the contrary, the forth-and-back approach allows us
to introduce an implicit local scheme: any intensity at a
given point, propagating along a given direction, is
expressed as a linear combination of the unknown values of
the source function S(z) and its t-derivative S'(t) at previous
points along the same direction.

This alternative choice leads to a different way of per-
forming the iterative scheme. The result is a very high rate
of convergence.
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In the first part of this study on non-LTE line RT, we
limit ourselves to the well-known instance of the two-level
atom line formation problem, under the assumption of
complete redistribution.

The particular interest of both the problem itself and the
relevant methods for its solution is due not only to its
intrinsic physical relevance but also, above all, to the fact
that it constitutes the veritable cornerstone of RT. More-
over, because its exact solution is known, it constitutes a
very useful benchmark for testing the quality of any new
algorithm.

In the second part, the method is employed to solve both
the two-level atom problem, in which partial redistribution
is taken into account, and the non-LTE line formation
problem in the case of a multilevel atom model.

For the sake of an easier presentation, we consider in this
paper the case of a plane-parallel, stationary medium.
However, the conclusions of this study can be straightfor-
wardly generalized to other systems with different
geometry.

2. THE TWO-LEVEL ATOM MODEL

Let us consider a stationary medium consisting of plane-
parallel layers whose physical properties vary only with the
coordinate z measured along the direction k perpendicular
to the layers. Let the system be bound by the planes 4 and
B, whose intersections with the z-axis have coordinates z,
and zg such that z, > z,.

According to physical considerations, it is customary to
choose z, as the origin of the t-coordinates (i.e., on the
upper boundary surface) and to introduce a mean optical
depth scale 7, defined by

oz) = f "z )

where x(z) [or x()] is a weighted average of the opacity,
assumed to be known. Thus, for z = z, it holds that = = 0;
for z =z, 1 = T, ie., the total mean optical depth of the
system.

Under the above assumptions, the RT equation takes the
form

d
p = g L1, — @] ©

According to the standard notation, I,,(7) is the specific
intensity of the radiation field at the mean optical depth t, x
is the frequency displacement from the line center in
Doppler width units, and u is the cosine of the angle
between the photon’s direction and the outward normal .
The quantity ¢, is the absorption-line profile, normalized to
unity.

In the case of an atomic model consisting of only two
bound levels (two-level atom), and assuming complete
redistribution (CR) in the line profile, the frequency-
independent line source function is

S(r) = eB(r) + (1 — &)J (1) , 3

where J, is the scattering integral,

I0=1 J du dex 0. @
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which accounts for the angle and frequency coupling of the
specific intensities at the given depth point 7. The branching
ratio between the thermal (LTE) contribution B(t) and the
scattering term J, is represented by the non-LTE parameter
¢. The latter depends on the local properties of the medium,
so that it may be a function of the optical depth 7 as well.
The same holds true for the absorption profile coefficient
¢, which in some cases may also depend on the direction p.

Finally, the specific intensities incident onto the bound-
ary surfaces are given data of the problem. They furnish the
corresponding initial conditions for equation (2), namely,
the known values of the down-going intensities incident
onto the upper boundary surface 7=0: I,(t=0)
(—1 < u < 0), and the up-going intensity incident onto the
lower boundary surface, 1 = T: I, (t=T), (0 <pu <1). As
is customary, we use the notation I, and I, for the up-
going and down-going intensities, respectively, where u now
ranges from 0 to 1.

For the sake of simplicity, in the presentation of the new
method we consider the case of a profile independent of
both t and u. The application to the most general case is
straightforward, because the difference is only in the
numerical computation of the optical distance between
pairs of depth points for any given frequency x and direc-
tion u.

The numerical solution of the RT equation (2) can be
directly achieved by means of either differential or integal
methods (see Mihalas 1978). As is customary, the first step
toward a numerical solution is to consider I7,(r) at each
depth 7 over a finite grid of ND directions u; and NF fre-
quency points x;. Then the integrals in the scattering term
J,(7) are replaced by the corresponding quadrature sums,
with proper integration weights. Therefore, we consider
equation (2) only for the discrete set of specific intensities
with directions p;, i = 1, ND, and frequencies x;, j = 1, NF.
The numerical solution of the set of equations (2) needs the
discretization of the depth variable too. Thus we evaluate
all the relevant depth-dependent functions only on a finite
grid of mean optical depth values 7;, L = 1, NL. It holds
that 7, = 0 at the surface, and 7; = T at the bottom.

3. THE A-ITERATION

The most straightforward iterative procedure to solve the
two-level atom problem is the so-called A-iteration, which
solves in turn the RT equation (eq. [2]) and the statistical
equilibrium equations, the latter leading in this case directly
to the source function given by equation (3).

Starting from a current solution S°(t) of the source func-
tion, we compute the frequency-integrated mean intensity
J (1), either by means of equations (2) and (4) within a
differential approach or by means of an integral operator
like that defined by equation (5) within an integral
approach. Then the updated values S"(z) of the source func-
tion are computed via equation (3). This may be represented
by the following sequence: S°(z) - I,.,(t) — J (1) > S"(z).

The differential approach, which uses a finite-difference
form of equation (2) is one of the most general and flexible
methods used to solve the aforementioned problem.
However, the integral formalism which employs the A-
operator (Hopf 1934) to represent the formal solution of the
transfer equation,

Joltr) = Az, 1) S(T) Q)
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is also in current use (for the line formation problem see
Avrett & Loeser, 1969). The aforementioned iterative
sequence is named A-iteration after the A-operator, what-
ever the actual method employed for the solution of the RT
equation.

But, irrespective of the approach chosen, the convergence
of this straightforward procedure in practical computations
is too slow to be useful for systems that are optically thick.

Let us now comment upon the construction of the
A(ty, 1;) operator. From a prescribed functional form for
S(z), one can write, for all the values 7; of the optical
depth grid, linear relations for the specific intensities I, (ty),
and consequenty for the frequency-integrated mean inten-
sity J ,(t.), as a function of the unknown values of the source
function S(z).

In order to do this in the frame of the classical product
integration method (Avrett & Loeser 1969), a polynomial
representation of S(z) on each subinterval (z, _, ;) must be
assumed. As the RT is a typical integrodifferential, second-
order problem, a piecewise quadratic approximation for
S(z) is necessary from the mathematical point of view and
sufficient from the numerical point of view. Of course, it is
important to ensure that the variation of the function
between each two successive depth points (t,_, t;) is not
too abrupt. Between the last two depth points (ty;_ 1, Tyr)s
it is necessary to use a linear approximation.

Although in this paper we do not employ any A-operator,
our implicit treatment of the RT problem is based on the
above functional representation of S(t).

4. A SEMI-IMPLICIT A-ITERATION

This section has two purposes: to discuss an improved
A-iteration method with results better than those of ordi-
nary A-iteration by only a factor of 2, and to introduce the
germ of the new method that we present in § 5.

The existence of two separate families of boundary condi-
tions naturally suggests the separate description of the pro-
pagation of the up-going intensities I}(t), with initial
conditions at ty; = T, and that of the down-going inten-
sities I,(t), with initial conditions at t = 0. This recalls the
basic idea of a forth-and-back scheme.

Consequently, we can define the corresponding mean
intensities:

T = jldu f " dx g I50) (62)

and

1 +
J, () = L dp f dx ¢, I15,(1) . (6b)
Therefore, according to equation (4), we have

Jo(@) = 3015 () + T, ()] - ()

On the basis of this physical discrimination, we can seek
new, more efficient iterative strategies. The first and most
obvious one is a semi-implicit A-iteration, which works
according to the following scheme.

We assume, as in ordinary A-iteration (cf § 3), that a
current estimate of the source function, $°(t), is known at all
the optical depths 7,. Thus, it is straightforward to compute
explicitly in the first part of each iteration the down-going
intensities I, (z;) by solving the relevant RT equations with
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a known source function, either in the differential or in the
integral for, and, successively, the corresponding frequency-
integrated mean values J,, (t) (cf eq. [6b]).

Once J, (z;) has been explicitly evaluated at each depth,
we can compute the up-going intensities in the second part
through an implicit procedure.

From the integral form of the RT equation for the
up-going intensities, we can write, for the generic layer

(tr> T+ 1)

TL+1

I ;ru(TL) =1 ;u(TL+ ) e ATk 4 J‘

L

S(t) e~ ¢~ Px
U

®)

By assuming piecewise parabolic behavior for the source
function, it is easy to derive the coefficients p},, pZ,", and
g5, of the unknown values of S(z;), S(z..+,), and S'(t;+,) in

the relation
I;ru(TL) =1 ;u(TL+ e el 4 P;lc; S(tr)
+ P)Zc;S(TL+ )+ q;ru S(tr41) - )]

These coefficients, together with the exponential exp
(—Ato,/u), are the basic building blocks of the local
implicit scheme. They depend only on the known slantout
optical distances At¢,/u, with At = 1, ,, — 1,. Here and in
the following, the prime denotes derivatives with respect to
T.

We start from the bottom layer (ty; _ 1, Tyz). The incident
up-going intensities I (ty,) are given data of the problem,
and consequently J, (ty;) is also known. As J, (ty;) has
been already computed in the first part of the iteration, we
obtain J (ty;) from equation (7), and hence the value of the
new source function S"(t ;).

Because of the assumed linear behavior of S(z) in the last
layer (ty_1, Tyz), the derivatives at the two limiting points
of this interval are given by the relation

S'(tyr) = S'(tyr—1) = [S(tyr) — S(tyr-)1/Ar . (10)
Therefore, equation (9) particularizes into
I;ru('L'NL—l) = I;u(TNL)eiAWX/” + P;;S(TNL—O + P;Zc;:r S(tyr) -

1)

Of course, the coefficients P}, and P2 are easily derived
from pi, p2;, and g;,, previously computed, by taking
into account equation (10).

Because I} (ty,) is a datum of the problem, and the value
of S(zy;) has already been computed, we can cast equation
(11) in the form

I:u(tNLfl) = 42{:” + B3, 8(NL-1) 5 (12)

i

where the coefficients .o/, and %, are easily derived. After

numerical integration over all frequencies and directions (cf.
eq. [6a]), we obtain the coefficients a* and b™ of the expres-
sion

Jo(exp-1)=a" +b"S(tyr-1) - (13)

At this stage, J,, (ty.—,) is already known from the first
part of the current iterative step, and J, (ty, —,) is implicitly
known in terms of the as yet unknown value of S(zy. _,) (see
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Fi1G. 1.—Evolution with iterations of the computed source function for
a two-level atom with ¢ = 10~ 4. The solid lines, labeled with the relevant
iteration number, correspond to forth-and-back implicit A-iteration (see
§ 5). The dashed and dot-dashed lines correspond to the 1000th iteration of
the semi-implicit A-iteration (cf § 4) and the ordinary A-iteration (cf. § 3),
respectively.

eq. [13]). By using equation (7), we can express J ,(ty; 1) in
the form

J¢(TNL— 1) =0yp—1+ Byr—1S(tyr—1) - (14)

Again, the numerical values of the coefficients oy, _, and
Pyi—1 are easily derived. This relation, together with the
definition of S(ty;_,), as in equation (3), lead to the new
numerical value of S"(ty; _,).

Once the values of S"(ty;) and S"(ty,_ ) are known, the
derivatives at t,;_; and 7, are given by equation (10). The
values of I(ty.-,) are straightforwardly obtained by
means of equation (12).

Then the previous elimination scheme can be repeated for
all the successive layers (t;, 7,4 ), sweeping upward from
L =NL —2up to L =1. The known output from the pre-
vious layer (ty 41, Ty 45), €, ] ;,;(TL+ 1) S(tL+1), and S'(tp 4 1),
is the necessary and sufficient input for the treatment of the
succeeding layer (z;, 7, +,), Where, via equation (9), we can
derive the coefficients /], and %], of an equation like
equation (12) at any ;, and eventually obtain the values of
the coefficients o; and f; of a linear relation like equation
(14):

Jq;(TL) =ay + BrS(ty) . 15

By now taking into account equation (3), we obtain the
new value S"(z;) of the source function at z;.

Just a minor difference arises in the way of computing
S™(t.). Equation (10) must be replaced by

S'(ty) = 2[S(rr+1) — S(ep)l/AT — S' (T4 1) » (16)

which follows from the assumed piecewise parabolic behav-
ior of S(z).

In the above scheme, we assumed that both I (t = 0)
and I} (t = ty,) were known data of the problem. This does
not hold true, however, in some cases, e.g., in the important
one of a semi-infinite atmosphere. In this instance, the
intensities incident on the last layer are not explicitly

T T T T T T T

log S

log T

F1G. 2—Same as Fig. 1, but for the case with e = 1078

known. However, at large optical depth the so-called diffu-
sion approximation holds for the specific intensity. Namely,
I} (tyr) can be expressed as a linear combination of S(ty,)
and S'(ty;). Thus, J (ty;) results as a linear combination of
S(tyz) and S(ty;_,), after we have eliminated S'(ty;) by
means of equation (10). A similar linear form for J (ty; — ;)
is derived by starting from equation (11). The values of
S"tyr—1) and S"(ty,) are straightforwardly derived from
equation (3).

It is self-evident that the ease of use of this semi-implicit
A-iteration is the same as that of the classical one. The
distinctive difference is brought about by the fact that the
former uses the updated values of the source function in
order to compute the up-going intensities.

This approach is similar to that of the Gauss-Seidel
method discussed by Trujillo Bueno & Fabiani Bendicho
(1995). However, the way of computing the values of I](7,)
is different. There, the intensities were computed by means
of a differential operator expressed by a three-point differ-
ence formula, which may introduce minor numerical diffi-
culties, since such a formula needs the value of S(t; , ;) that
has just been recomputed, that of S(z;) which is actually
computed, and that of S(z;,_,), whose removal requires a
global treatment of all the values of {S(z,)}.

On the contrary, the integral method proposed here is a
two-point algorithm that works by taking into account the
values of both the source function and its first derivative on
pairs of successive depth points.

However, the improvement in terms of rate of con-
vergence brought about by this “half” A-iteration is not
substantial. With respect to classical A-iteration, only a
factor of about 2 is gained, which is, of course, not enough
(See Figs. 1 and 2.)

5. IMPLICIT A-ITERATION

The conclusion of § 4 is that although better than that of
the ordinary A-iteration by a factor of 2, the rate of con-
vergence of semi-implicit A-iteration is still exceedingly
slow. Therefore, we must explore the possibility of further
acceleration.

In their work already mentioned in § 4, Trujillo Bueno &
Fabiani Bendicho (1995) introduce a successive overrelaxa-
tion (SOR) method in order to achieve a faster iterative
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procedure. However, the value of the relaxation parameter
o that optimizes the iterative procedure is known for a few
structured problems only. In more complicated problems, a
fairly sophisticated eigenvalue analysis may be necessary in
order to determine, case by case, the optimum value of w (cf.
Golub & Van Loan 1983, § 10.1).

On the contrary, we achieve here a substantial improve-
ment of the rate of convergence by fully exploiting the idea
of an implicit representation of the source function in the
computation of both the up-going and the down-going
intensities.

In semi-implicit A-iteration, we store the numerical
values of the down-going mean intensities J,, (), computed
from the known values S°(7) of the current estimate of the
source function. Alternatively, in forth-and-back implicit A-
iteration, we shall use the old values of the source function
to compute and store, for each L (L = 1, NL), the coeffi-
cients by and ¢; of the linear relation

Jo(tr) = b S(tr) + ¢ 8'(xy) 17

which represent implicitly the values of the down-going
mean intensities. The way of computing the coefficients of
equation (17) is straightforward and will be described in
§ 5.1. These coefficients are used later in the succeeding
backward process.

We show in what follows that the results lead to a new
method whose rate of convergence is extremely high.
Perhaps it is worth stressing that the implementation of this
new method comes from physical considerations, not from
a previous spectral analysis of the mathematical properties
of the problem.

The operative scheme of the new method is essentially the
same as that of semi-implicit A-iteration, which in turn is
the same as that of ordinary A-iteration. The fundamental
improvement is the way of storing the information relevant to
J, (v) (cf. eq. [17]) in the first part of each iterative step.

5.1. The Forward Process

We start at the upper boundary surface L = 1, where the
values of I (0) are given data of the problem. Then we
obtain directly from equation (6b) the corresponding
known value

J,(ty)=a; . (18)

Usually it holds that a; = 0.

At all successive optical depths 7;, with L > 1, the formal
solution of the RT equation for the down-going intensities
reads:

TL

I (tp) = I(t —1)e Al 4 Jv

TL—1

S(t) e~ (L= Dox/n & dt .
u

(19)

As in § 4, the assumption of parabolic behavior for S(z) in
the interval (t _ {, 7;) allows us to write

I (tr) = It 1)e Aweslu
+ P;lcu_ S(tp—y1) + P:zcu_ S(tr) + Axp S'(zy) . (20)

The coefficients pi,, pZ,, and q,, another set of basic
building blocks of the scheme, are easily derived.
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The explicit numerical value of I (1, _,) is the result of
the previous recursive application, from the layer (z;, 7,)
down to the layer (t; _,, 7, _ 1), of equation (20), in which we
have used the known values of the set {S°(t); I =1, L — 1}
as well as those of the derivatives {S'°(z)); =1, L — 1}.
Likewise, we use the values S°(z; _ ) for S(z; _,) in equation
(20). Consequently, by grouping together the known terms
we can rewrite equation (20) in the form

Ix_u(‘EL) = ﬂx—u + '@x_u S(TL) + (gx_u S,(TL) H (21)

where the coefficients %, and %, replace p?, and q,,
respectively, and it holds that

A = Ixiu(TL—1)eiwam + P;lcu_So(TL— 1) - (22)

By integrating over frequencies and directions, we obtain
the relation

J,(t) = ag + by S(ty) + éLS(ty) - (23)

We wish to stress that the coefficients p;, , p7, , and g, in
equation (20), and consequently #,, and %, in equation
(21), hence b; and &; in equation (23), do not depend on the
values of §°(t). They depend only on the optical distance
Atr(L — 1, L). On the contrary, the coefficient 4; depends
linearly on the values of S°(t) for all the optical depths with
T < 1. Because numerically the set of derivatives {S'°())}
depends linearly on the set {S°(t,)}, one easily realizes that
I, (t;—,), and consequently the coefficient 4, , are linear
combinations of the set {S°(t;); I = 1, L — 1}. In principle,
we could store the coefficients d; , b, , and ¢, , evaluated at
each depth point t;, for further use in the backward process
of computation of the new values of S(z ;).

But, in the recomputation of the new values S"(z;) and
S™(t;), a mismatch might occur at 1,: the curve S°(t) for
T < 1;, used to compute d; , and the updated curve S"*(t) for
T > 1;, might have different values at 7;,. Thus, a more
correct computation of d; in accordance with this updated
value of $"(z;) can be reached by scaling the function S$°(z)
for © < 7;, by the factor $"(z;)/S°;). This will be automati-
cally performed in the backward process, provided we store
in the forward process, instead of the coefficients 4; , by,
and ¢; , the new ones b; and c¢; of the revised relationship
anticipated in equation (17):

Jo (1) = by S(tr) + ¢ S'(zy)

namely, the relationship that carries on the information rel-
evant to J,, (t). It holds that

by = by +a;/S°), (242)
e =& . (24b)
The procedure is repeated until L = NL.

5.2. The Backward Process

The backward process is, in practice, the same as in § 4.
At the bottom, J, (ty,) is directly known from the corre-
sponding boundary conditions. By taking into account
equation (17) for J, (ty.), we obtain a similar relation for
J (tyz), from which, after we have eliminated the derivative
S'(ty) by means of equation (10), we can easily derive the
coefficients ay;, by, and cy;, of the relationship

J q:(TNL) = ayg, + by S(tyr) + enp S(tyr—1) - (25)

Equation (11), i.e., the RT equation for the out-going inten-
sity between 7y, and 7y, allows us to express J (ty,_ ;)
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as a linear combination of S(ty;) and S(ty; _ ;), whose coeffi-
cients are known. On the other hand, equation (17) together
with equation (10), allows us to express J,, (ty;,— ;) also as a
linear combination of S(zy;) and S(ty._;). Consequently
J,(tyr—1) can be expressed in the same form as equation
25):

J¢(TNL—1) =ayr—1 + by 1S(twr) + enp— 1 S(tyr—1) -
(26)

By substituting equations (25) and (26) in the definition of
the source function (see eq. [3]) at 7y, and ty._,, respec-
tively, we are left with a system of two linear algebraic
equations in the two unknowns S(ty;) and S(ty;_,), from
which we easily derive the updated values of S"(zy;) and
S"(tnp—1)-

The values of the derivatives S'(ty;) and S'(ty;_,) are
trivially derived from equation (10). It is straightforward to
compute I (tyy, ) from equation (11).

The continuation of the backward process from 7y, _
through t, is obvious. For each layer (z,, 7, 1), the numeri-
cal values of S(t , 1), S'(t, 1), and I}, (. , ;) are known from
the treatment of the previous layer.

The coefficients b; and c; for J~(z;) in equation (17) are
known from the forward process. By using equation (16) to
express S'(t;) in terms of the thus far unknown value of S(z;)
and the known values of S(t; , ;) and S'(z , ), we can write
J, (t;) as a linear function of S(z;) only.

By integration of the formal solution for I],(z;), as given
by equation (9), and by taking into account the fact that all
the terms except S(z;) are known, a similar expression for
J 5 (vy) is easily derived.

Consequently, we obtain the required linear relation
between J (t;) and S(r;), the same as equation (15), that
together with equation (3), allows us to derive the new value
of S"(z;) and successively that of S”(z,). In such a way, the
step is closed, and we can proceed upward.

6. COMPARATIVE RESULTS AND CONVERGENCE
PROPERTIES

In order to test the new method proposed in § 5, we
applied it to the two-level atom problem described in § 2.
This represents the ideal test case for checking the numeri-
cal accuracy of any algorithm employed to solve the RT
equation, because its exact solution has been known for
many years. (See, e.g., Sobolev 1956; Case 1957; Avrett &
Hummer 1965; Ivanov 1969.)

As at first instance, we considered a medium of constant
properties, whose only opacity source is the line itself,
without an overlapping continuum. In this case, due to the
assumed zero gradient of the Planck function B(r), the
features of the solution, namely, the value of the source
function at the surface and its characteristic scale (i.e., the
depth of thermalization), depend only on the non-LTE
parameter e.

In typical non-LTE problems, the value of ¢ is very small
($10™%). For this reason numerical errors can easily blur
the solution. In order to test the capability of the method
and to check the accuracy of the solutions, we selected two
cases with ¢ equal to 10~ % and 108, respectively.

Figures 1 and 2 show the evolution with iterations of the
source function computed. One can see at once that, in a
very small number of iterations (of the order of 10-15),
forth-and-back implicit A-iteration furnishes numerical
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F1G. 3.—Relative error for the iterations 6-14 of the source function
S(), shown in Fig. 2.

results that practically coincide with the exact solution. For
comparison’s sake, we also plotted the values of the source
function after 1000 iterations, obtained both with classical
A-iteration and with semi-implicit A-iteration (cf. § 4). The
rate of convergence of the latter is higher by a factor of 2,
but in both cases the convergence is unacceptably slow.

By comparison of our results (achieved with the same
number of discrete ordinates for directions and frequencies)
with the exact solution, S.,(t), by Avrett & Hummer (1965),
we are in a position to plot the percent relative error on S(z)
at each iteration run.

In Figures 3 and 4 we show (on different scales on the
ordinate) the errors corresponding to iterations 6—14 for the
case with ¢ = 10~ 8. For the case with ¢ = 104, the errors
are slightly smaller.

For the same two cases, we compare in Table 1 some
parameters suitable for the study of the convergence
properties of the method. First of all, we consider the abso-
lute value of the maximum relative errors |AS"|,,, which
corresponds to the maximum value in Figures 3 and 4, as
well as the absolute value of the maximum of the relative
correction | 68" |,, between two successive runs of iteration.

1.5

1

100(5-S_)/S,,

0.5

log 7

Fi1G. 4—Zoom of Fig. 3, to render appreciable the evolution of the
relative error along the last iterations.
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TABLE 1
CONVERGENCE PROPERTIES OF THE IMPLICIT A-ITERATION METHOD*

Iteration | AS™ |5 [ 68" |as | AS™ I, 68" I, I E*]l,
e=10"%
1....... 772.944 92412 33.242 66.228 ...
2. 199.491 68.386 14.084 17.453 23.698
3. 69.860 46.182 6.652 7.185 12.212
4....... 27422 27.208 3.241 3.370 6.347
5., 11.075 14.420 1.570 1.674 3.328
6....... 4.359 7.058 0.734 0.847 1.716
Teeennn 1.682 3.188 0.326 0.423 0.844
8.nnl. 0.969 1.385 0.134 0.210 0.419
9., 0.808 0.603 0.061 0.099 0.189
10....... 0.541 0.485 0.043 0.047 0.088
11....... 0.344 0.369 0.036 0.025 0.053
12....... 0.200 0.239 0.028 0.017 0.053
13....... 0.124 0.141 0.021 0.013 0.051
14....... 0.077 0.091 0.016 0.009 0.038
15....... 0.077 0.074 0.012 0.007 0.024
16........ 0.075 0.057 0.010 0.005 0.017
17 ....... 0.073 0.041 0.009 0.004 0.014
18....... 0.067 0.025 0.009 0.003 0.012
19....... 0.058 0.020 0.010 0.002 0.010
20....... 0.055 0.016 0.010 0.001 0.007
e=10"8

13587.700 98.810 28.880 76.497 .
1131.210 91.709 10.535 16.990 21.841

2.
3. 227.688 74.742 4.382 5.974 9.214
4....... 70.859 49.401 1.868 2481 4.243
5. 26.521 27.296 0.785 1.077 1.902
6....... 10.645 13.494 0.321 0.463 0.813
Teoonn. 4.466 6.194 0.129 0.192 0.328
8....... 1.794 2.835 0.050 0.080 0.328
9. 0.716 1.282 0.019 0.032 0.053
10....... 0.354 0.592 0.006 0.014 0.026
1....... 0.316 0.267 0.005 0.007 0.014
12....... 0.243 0.169 0.006 0.004 0.007
13....... 0.192 0.114 0.007 0.002 0.006
14....... 0.155 0.091 0.007 0.001 0.004
15....... 0.149 0.069 0.008 0.001 0.004
16 ....... 0.142 0.049 0.008 0.001 0.003
17 ....... 0.136 0.037 0.008 0.001 0.003
18....... 0.128 0.027 0.008 0.000 0.002
19....... 0.120 0.019 0.008 0.000 0.001
20....... 0.120 0.014 0.008 0.000 0.001

Note—Col. 1: Iteration number. Col. 2: Absolute value of the
maximum relative error. Col. 3: Absolute value of the maximum of the
relative correction. Col. 4: Quadratic average of the relative error. Col. 5:
Quadratic average of the relative correction. Col. 6: Quadratic correc-
tion ratio.

2 All quantities are in percent.

Furthermore, we evaluate the quadratic average over the
full optical depth interval of the relative error and the rela-
tive correction, respectively:

1AS" ], = { f "[5°0) — S (01 dInc / f 'S dlnr}m
0 0

(27)
and
I 08™ I,
= {JT[S"(T) — 8" Y1)]?dIn ‘c/JT[S"_l(‘c)]Zdln 1}1/2 .
(28)
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Finally, taking into account a previous suggestion by L.
Auer (1993, private communication) also Auer, Fabiani-
Bendicho, & Trujillo-Bueno 1994), we also consider the
quadratic correction ratio:

168" Il
1— 108" 1o/ 68"~ "I,

From global inspection of the tabulated parameters, the
excellent convergence properties of the forth-and-back
implicit A-iteration come into view. After a comparative
analysis of the run with iterations of the single parameters,
we choose, as the best criterion to stop the run of iterations,
the tolerance condition that the maximum value of the rela-
tive correction of S"(t) between two successive iterations be
of the order of 0.1%.

Because of the nature of the method, simple precision is
enough for most of the actual computations. Of course,
when the value of the parameter ¢ is smaller than the com-
puter’s intrinsic round-off error, the use of double precision
becomes necessary in order to prevent spurious contribu-
tions to the sources, as in the case of our test with ¢ = 1078,

Finally, we wish to call the reader’s attention to the
asymptotic behavior of the residual error |AS|,, with the
number of iterations. Table 1 shows clearly that further
iterations cannot reduce its value. This has to be ascribed to
the unavoidable errors brought about by the discretization
of the optical depth scale. The results displayed, obtained
with 15 points per decade, show a maximum residual error
of about 0.1%. With 10 points per decade, | AS |;, can be of
the order of 0.3, and with 5 points per decade it can grow
even to 1%.

7. THE PARTIAL REDISTRIBUTION PROBLEM

IE" [, = (29)

In this section, we apply the forth-and-back implicit
A-iteration method to the case of the two-level atom line
formation problem, in which partial redistribution is taken
into account.

In this case the source function, which is not frequency
dependent, takes the form

+ oo
S.(r)=¢eB(r)+ (1 —¢) dx' R(x', x)J.(7), (30)
where J.(7) is the specific mean intensity at frequency x/,
and R(x', x) is the redistribution operator. In the discrete
ordinates representation, the source function S, =S,,
reads:

Si(t)=¢eB(r) + (1 —¢) 2 R(j, k) J (7) , (31)

where the index j corresponds to x’, that is, to the frequency
of the absorbed photon.
7.1. The Forward Process

Following the procedure already described in § 5.1, it is
straightforward to compute and store, for each frequency x;
and each optical depth 7;, the set of coefficients b;; and c;;,
of the relationship

Ji () = by Sftr) + ¢ Sty) - (32)
That is, for each frequency x; we have a relation like
equation (17).
7.2. The Backward Process

Likewise, exactly as in § 5.2, we know for each layer (z;,
7.+1) the updated values of I/ (t..,), and S%(z..,) and
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X

Fi1G. 5—Evolution with iterations of the frequency-dependent source
function S(x) at optical depth t = 0, for a two-level atom line with a Voigt
absorption profile ¢,(x) and the Ry(x’, x) redistribution function. The
values of ¢ and a are shown in the figure.

87(ty, +,) for each frequency x;. Thus, we can easily compute
the coefficients of a relation like equation (9) for the out-
going intensities I7,(r;). By integrating over u, we obtain the

coefficients a;7, and b}y, of the relation
Ji(ty) = aj, + b}, Si(zy) (33)
for all the frequencies x;.
After removing S(r;) in equation (32) by means of

equation (16) [S%(t..,) and S7(t..,) are known at this
stage], we obtin the coefficients a;; and l;j_L of the relation

Ji () =y + b Sfry) . (34)

Equations (33) and (34) allow us to write the coefficients
o;, and B;; of the required relationship

Jfry) = oy + B Si(tr) 35)

which, replaced in equation (31), ensure a straightforward
computation of the updated values of the source function
Si(z;) and, from equation (16), of the corresponding values
S¢'(zr)-

Then the process is repeated upward.

F1G. 6.—Same as Fig. 5, at optical depthz = 1
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7.3. Results

We solved the RT equation (2) for a two-level atom with
a source function as in equation (30). We used a Voigt
profile ¢ (x) with a = 10"2 in the absorption coefficient,
and the redistribution function Ry(x’, x), which corresponds
to the angular mean redistribution function for the two-
level atom with an infinitely narrow ground level. Again, we
considered the two cases with ¢ =10"% and ¢= 1078,
respectively.

As in the previous case of complete redistribution, a small
number of iterations (13 and 15, respectively) are enough to
fulfill the tolerance criterion introduced above, namely, that
the greatest relative correction (for all the frequencies and
optical depths) between two successive iterations be less
than 0.1%.

The results reproduce the well-known ones by Hummer
(1969) and Mihalas (1978). In Figures 5 and 6 we show the
evolution with the iterations of S(x) for the two optical
depths © = 0 and t = 1, respectively.

8. THE MULTILEVEL PROBLEM

In the most general case of a multilevel atom model, we
must solve an RT equation for each actual spectral line, i.e.,
for each allowed radiation transition between the levels
considered. These radiative transitions are coupled through
the level populations {N;}, which are the solution of the
statistical equilibrium (SE) equations describing the conser-
vation of the population of each level.

In the stationary case, the SE equations are linear alge-
braic equations for the set of level populations {N}.
However, some of their coefficients include the frequency-
integrated means intensity of the line radiation field J,,,
relevant to the radiative transition i — j. For each level j, we
may express the conservation of its population N; in the
form
Z [(N;C;; — N;Cj) + (N; B;; — N;Bj)J
i<j

+ Z [(Nk ij - NjCjk) - (Nijk - NkBkj)J(pjk + NkAkj]

k>j

— N 4;]

Pij

=0, (36)

where B;;, B;;, and A;; are the Einstein coefficients of the
radiative transitions considered, and C;; and Cj; are the
corresponding collisional rates.

In turn, each of the integrated mean intensities J,,
depends, via the corresponding RT equation, on the source

function §;;, i.e., on the level populations:

S..=@= NiiAﬂ
Y Xij NiBij_Niji

In this way, the RT equation together with equations (36)
and (37) represent a strong nonlinear and nonlocal problem.
An iterative procedure becomes necessary. The straight-
forward A-iteration method, which solves the problem
by following the scheme {N?} - {S;} - {L.G
N} = {J,,} = {N}}, has an impractically slow convergence.
Alternatively, the iteration method proposed in this paper
can accelerate it without any difficulty.

jo

(37

8.1. Forth-and Back Implicit A-Interaction

The operative procedure for this problem is exactly the
same as in §§ 5 and 7. We start with a known set of popu-
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F16. 7—Normalized source functions S;/Bj, corresponding to the
three lines of a three-level hydrogen atom within an isothermal atmo-
sphere. The log 7 scale on the abscissa has to be read, case by case, as the
mean line optical depth relevant to the transition considered.

lations {N?}, ie., with a set of known source functions
{S)} (eq. [37]) and the corresponding first derivatives
{8"°(x)} for all the transitions i — j. As in the previous cases,
we repeat for each transition i — j the entire forward process
and the backward process layer by layer up to t;, in order
to obtain the coefficients «;; and f;; of the required relation:

J oy = oij + Bij Sy - (38)

By replacing J,,; in equation (36) with the expression
given by equation (38) and taking into account equation
(37), we can rewrite the generic SE equation for level j in the
form
YI(N:C;; — N;Cj) + (N;B;; —

i>j

N;Bj)o;;

+ N;A;B;; — N; Aj;]
+ Z.[(Nk Ci; — N;Cy) — (N; By, — Ny By,

k>j
_NkAkjﬁjk+NkAkj]=0 (39)

That is, we recover a new linear system for the set of popu-
lations {N,}, whose coefficients are quantities explicitly
known: the radiative and collisional coefficients and the
interation factors {o;;} and {B;;}. As already shown in § 5.2,
the latter are easily computed layer by layer.

The system of equations (39) gives the updated values of
the populations {N7}. The process is iterated to con-
vergence.

8.2. Results

In order to test the feasibility of the method when applied
to the multilevel case, we solved the same problem, namely,
a three-level hydrogen atom within an isothermal atmo-
sphere, as in Avrett & Loeser (1987). Our results, shown in
Figure 7, coincide with those from Avrett & Loeser within
an absolute error never greater than 3%. The existing differ-
ences are due to the unavoidable residual errors brought
about by the discretization in depth. In both cases, three
discrete optical depth points per decade were used.

The implicit A-iteration method requires only nine iter-
ations to fulfill the usual tolerance criterion that the relative
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difference (for the three source functions at all the optical
depths) between two successive iterations be less than 0.1%.

9. RECAPITULATIVE REMARKS

In this section we wish to comment upon the distinc-
tive features of forth-and-back implicit A-iteration. Let us
look back to the two-level atom problem (cf. § 2). It is
well known that the straightforward A-iteration
procedure—S°(t) - I,,(t) > J (t) > S"(z), has an exceed-
ingly slow rate of convergence in optically thick media.

However, one easily realizes that this direct iterative
scheme holds, from the previous iteration, more informa-
tion than necessary when dealing with the current iteration,
because it does not take full advantage of the linear com-
ponents of the problem. That is, in order to obtain the
updated values of the source function, S*(r), ordinary A-
iteration computes the whole mean intensity J (7) from the
old values of S°(z).

Semi-implicit A-iteration, thanks to the forth-and-back
approach, computes from S$°(c) only one-half of J(z),
namely, the down-going component J, (7). As already said,
the improvement is not substantial. Yet, there is another
way of separating the part of J () that is computed from
S°(t) from that which is treated implicitly. Operatively, we
can split J (t;) into a local and nonlocal component:

To(tr) = Jg(er) + J5°(zy) - (40)

We choose the local term Ji3°(z;) so that it depends linearly
on the unknown local values of S(t;) and S'(z;), through a
functional form like

Joo(rr) = BreS(y) + vr°S'(wn) (41)

whose coefficients I°° and yl°® are directly derived from the
integral form of the RT equation, thanks to the assumed
functional representation of S(z). (See § 5.) They depend
only on the known optical distances At(L — 1, L) and
At(L, L + 1). Above all, they are independent of the trial
values S°(t). On the contrary, the nonlocal term J3'°(z,)
dgpends on (and is to be computed from) the trial values of
S°(7).

Therefore, the values of the coefficients fi°° and y)°° are
known a priori for all the ;. Then, at a first stage we can
compute J5'°(z;) from $°(zy), i.e., the source function com-
puted in the previous step of iteration. Successively, by
taking into account the definition of the source function (cf.
eq. [3], equations (40) and (41), and equation (16), in order
to eliminate S'(z;), we obtain straightforwardly the updated
source function S"(zy).

However, the introduction of the forth-and-back
approach—and the consequent split into a forward step
and a backward step—provides a further improvement,
which comes from the fact that only half of the nonlocal
part of J,(t), namely, the nonlocal part of J, (1), is com-
puted from the old values S°(t) when dealing with the
down-going directions in the forward step. Later, when
dealing with the up-going directions in the backward step,
the nonlocal part of J, (r) is computed from the updated
values S"(z). In this way, a further reduction of the informa-
tion carried from the previous iteration over to the next one
is achieved.

We have reason to believe that the extremely good con-
vergence properties of forth-and-back implicit A-iteration
must be ascribed to the fact that the only quantity com-
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puted from the old values S°(t) of the source function, and
only for 7 < 7;, is the nonlocal part of J, (z;). The nonlocal
part of J(z;) as well as the local part of both J(z,) and
J, (t;) are computed at each depth ; from the updated
values of $"(z).

Besides the latter, another substantial improvement has
been introduced by the forth-and-back approach. When
computing, in the forward step, the nonlocal part of J,, (7,),
the procedure actually employs not the old values S°(t) of
the source function (for t < 7;) but those of a current source
function S*(t). The latter is a replica of $°(z), defined so that
it keeps the behavior of S°(zr) but with values properly
scaled in order to match at 7, the value S"(z;) of the updated
source function (cf. § 5.2). That is to say, the current source
function, actually used to compute the nonlocal part of
J, (t), includes information from both the old source func-
tion S°(t) (its behavior for © < 7;) and the updated source
function (its value at ;).

Vol. 487

In other words, in the course of each iteration step, the
forth-and-back implicit A-iteration method retains, at each
depth t;, the value of a single iteration factor: the ratio of
the nonlocal part of the down-going mean intensity to the
current source function §°(z;). This iteration factor, the only
piece of information retained from the current iteration, is
to be used later in the next step of iteration.
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APPENDIX

A SIMPLE EXAMPLE: THE MONOCHROMATIC TWO-STREAM SEMI-INFINITE CASE

In order to illustrate the numerical procedure of the method presented in this paper, we now consider the simplest case that
still retains the basic features of the two-level atom RT problem, namely, a semi-infinite, monochromatic case in which only
one outgoing intensity I " and one down-going intensity I~ are taken into account. (The two streams correspond to directions

with 4 = +1and p = —1, respectively.)

For this model, it holds that J* = I* and J~ = I, and consequently the source function [cf. eq. (3)] reads:

I +1°
S=¢B+(1— ¢ er . (A1)
With no incident radiation at the surface, the down-going intensity at the second depth point is given by
I; = f S(z) exp [—(z, — 1)]dz , (A2)
T1
which reduces to
I =a;S{+b;S,+¢; 85, (A3)
under the assumption of parabolic behavior of S() over the interval (z, 7,).
The coefficients of equation (A3) are given by
_ 2 2 2
a, =E—exp(—A)<1 +Z+P> . (Ada)
- 2 2 2
b, =1_P_GXP(_A)<_K_P>’ (A4b)
‘——1+%—e (—A)1+g (Ad4c)
c; = A~ CXP L

with A = 7, — 7,. (The reader should note that the notation here is different from that used in the main text of the paper.)
Successively, S, is replaced by the current value S9, and this term is multiplied by the scaling factor S,/S9. Thus, it holds

that

I, =d, S, +¢,85, (AS)

withd, = b, + (a; $9)/SYandc, =c;.

Next by assuming again the parabolic behavior of S(z) between 7, and 75, we can replace S’, by means of
Iy =1; exp[—(t3 —1)] + a3 S, + b3 S3+¢5 S5, (A6)

that is,

Iy =d;3 85+ ¢85, (A7)



No. 2, 1997 A FORTH-AND-BACK IMPLICIT A-ITERATION 745

where it holds that
1
dy=b; + ] {a3 83+ 15 exp [—(t5 — 7)1} . (A3)
3

In equation (A8), the value of I; is computed from equation (A5) using the current valus S9 and S%. This process is continued
until we determine the coefficients of the relationship

Iy = dypSyr + ey Syr - (A9)

In this way, at the end of the forward process we have computed and stored the two set of coefficients {c,} and {d,} (L =2,
NL)which are to be used later in the backward step to determine the new values of S;, starting with Sy, and Sy; _;.

In order to compute Sy;, Sy.— 1, and Iy, we assume, as a boundary condition, that S(z) is linear for © > 7y, _,; so that on
the interval (ty;, _ 1, Tyz) it holds that

Shp -1 = Sy, = mL = Swr-t (A10)
TNL — TNL-1
Consequently, we have
Inp—1=Syp—1 + Syp-1 (Alla)
and
II-VFL = Sy + S - (Al1b)

By recalling equation (A1), we can derive the two relationships

e
5 [(1 + dyp-)Syr—1 + (1 + cyp—1)Shr—1] (A12a)

SNL—l = SB +

and
1—c¢
SNL = EB + T [(1 + dNL)SNL + (1 + CNL)S;VL] . (A12b)

(The coefficients ¢y 1, dy.— 1, Cyr, and dy; were computed and stored in the forward step.) Now thanks to equation (A10), we
can easily derive the numerical values of Sy; and Sy, _ ;, and hence those of Sy, = Sy;— 1, Ing,and I, _ .
The next step is to compute

Inp—y =TIy, 1 exp [—(twr—1 — Tvr—-2)] + anz—2Swr—2 + byr—2Sni—1 + Cyp—2Sni—1 - (A13)
Because of the parabolic approximation for S(z), the coefficients ay; _,, bxy _ ,, and cy; _ , are given by
2 2 2
a;L_zzl—Z+P—exp (_A)P’ (Al4a)
2 2 2
byr_» :K_P_CXP(_A)<1 _P>’ (A14b)
and
N ——1+z—e (—A)1+% (Al4c)
CNL-2 = A Xp A

withA =1y, 1 — Typ_o-
As the numerical values of Sy; _; and Sy, _; are known, equation (A13) can be cast in the form

INp—2=Pnp—2+ dnr-2Sn1-2 - (A15)
From the forward step we have the numerical values of coefficients cy; _ , and dy; _ , of the relationship
II;L—Z szL—ZSNL—Z + cNL—ZSEVL—Z ’ (A16)

in which, according to our assumption of piecewise parabolic behavior for S(z), it holds that

Svr—1— SnL—
Ly = INL—1 ©PNL—2 Shi—1 - (A17)
TNL—1 — TNL-2

Because the values of Sy, _; and Sy, _; are known, Iy; _, (cf. eq. [A16] ) can be cast in the form

Inp > =vnp -2+ typ—2Snp-2 - (A13)
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Now equations (A15) and (A18) allow us to write:

Jnp—2=0yr—2 + Bnp—2SnL-2 - (A19)
By recalling the definition of the source function (see eq. [A1]), we easily derive the numerical value of Sy, _,, and

consequently that of I¥; _, (see eq. [A15]).
This procedure is iterated until S, is computed.
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