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ABSTRACT
In many radiative transfer (RT) problems, the sources contain a scattering term that couples all the

speciÐc RT equations, one for each frequency and direction, so that solving the problem means solving
the system formed by these equations. Each of them is a Ðrst-order linear di†erential equation with its
own initial condition assigned at a di†erent point of the medium, which makes the solution of the
system extraordinarily difficult.

One simple way to achieve a solution is with the so-called "-iteration : sources and sinks given as a
Ðrst approximation ] computation of the speciÐc intensities from their own RT equations] computa-
tion of the scattering terms ] recomputation of the sources and sinks. This scheme is straightforward,
but unfortunately in practice its convergence rate is too slow to be of value in the case of optically thick
systems.

The aim of this paper is to show that a forth-and-back approach (the natural approach to describing
sequentially the two intensities propagating along the two directions of a straight line), together with an
implicit representation of the source function in the computation of the intensities within the above iter-
ative scheme, can dramatically accelerate the convergence of the iterative process while retaining the
straightforwardness of ordinary "-iteration.
Subject headings : methods : numerical È radiative transfer

1. INTRODUCTION

It is well known that one intrinsic difficulty of non-LTE
radiative transfer (RT) problems arises from the nonlocal
coupling between the radiation Ðeld and the excitation state
of the gas : the transport (absorption and emission) coeffi-
cients depend on the speciÐc intensity of the radiation Ðeld,
namely, on the solution itself of the RT problem. In turn,
the speciÐc intensity at each point of the medium depends,
via the RT process, on the values of the transport coeffi-
cients over a wide range of distant points. Therefore, in
general, an iterative solution must be sought in order to
solve the global problem. Two alternative approaches can
be envisaged. Either a sequential iterative procedure can be
considered, in which the di†erent phenomena coupled
together are tackled one by one while all the others are
assumed to be known, or, the di†erent phenomena can be
faced simultaneously by means of the corresponding linear
formulation.

Although the transport coefficients may be assumed to be
known, at least within each step of the iterative procedure, a
further difficulty is introduced by the existence, within any
speciÐc RT equation (one for each pair of frequency and
direction), of a scattering term that depends on the full set of
the speciÐc intensities. Therefore, all the RT equations are
strongly coupled by the scattering term.

In some cases, such as in the well-known instance of the
two-level atom line formation problem, the source function
can be explicitly formulated in terms of a scattering integral,
and the problem, in this case linear, can be solved by using
either direct or iterative methods. Yet in many other physi-
cal problems it is not possible to write the source function

explicitly, so the self-consistent solution of the RT and sta-
tistical equilibrium equations, which here play the role of a
scattering-like process, has to be achieved by means of an
iterative method. This is the case, for instance, with the
multilevel atom non-LTE line transfer.

The aim of this paper is to show that the convergence of
some of the iterative methods currently in use can be greatly
accelerated when we treat separately, within a forth-and-
back process, the natural two-stream representation of the
radiation Ðeld along each line.

As with the integral methods based on the "-operator, we
employ an implicit representation of the source function
when computing the mean intensity of the radiation Ðeld. In
contrast to the "-operator implicit scheme, which we might
regard as global, we may consider the implicit scheme pro-
posed here as local.

In the former, the operator "(q, q@) is equivalent to the
integral form of the RT equation : one can express the spe-
ciÐc intensities hence the frequency-integrated meanI

xk(q),intensity through a linear combination of theJr(q),unknown values of the source function S(q@) for all the
values q@ of the optical depth grid.

On the contrary, the forth-and-back approach allows us
to introduce an implicit local scheme : any intensity at a
given point, propagating along a given direction, is
expressed as a linear combination of the unknown values of
the source function S(q) and its q-derivative S@(q) at previous
points along the same direction.

This alternative choice leads to a di†erent way of per-
forming the iterative scheme. The result is a very high rate
of convergence.
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In the Ðrst part of this study on non-LTE line RT, we
limit ourselves to the well-known instance of the two-level
atom line formation problem, under the assumption of
complete redistribution.

The particular interest of both the problem itself and the
relevant methods for its solution is due not only to its
intrinsic physical relevance but also, above all, to the fact
that it constitutes the veritable cornerstone of RT. More-
over, because its exact solution is known, it constitutes a
very useful benchmark for testing the quality of any new
algorithm.

In the second part, the method is employed to solve both
the two-level atom problem, in which partial redistribution
is taken into account, and the non-LTE line formation
problem in the case of a multilevel atom model.

For the sake of an easier presentation, we consider in this
paper the case of a plane-parallel, stationary medium.
However, the conclusions of this study can be straightfor-
wardly generalized to other systems with di†erent
geometry.

2. THE TWO-LEVEL ATOM MODEL

Let us consider a stationary medium consisting of plane-
parallel layers whose physical properties vary only with the
coordinate z measured along the direction k perpendicular
to the layers. Let the system be bound by the planes A and
B, whose intersections with the z-axis have coordinates z

Aand such thatz
B

z
A

[ z
B
.

According to physical considerations, it is customary to
choose as the origin of the q-coordinates (i.e., on thez

Aupper boundary surface) and to introduce a mean optical
depth scale q, deÐned by

q(z) 4
P
z

zAs(z@)dz@ , (1)

where s(z) [or s(q)] is a weighted average of the opacity,
assumed to be known. Thus, for it holds that q\ 0 ;z\ z

Afor q\ T , i.e., the total mean optical depth of thez\ z
B
,

system.
Under the above assumptions, the RT equation takes the

form

k
dI

xk
dq

\ r
x
[I

xk(q)[ S(q)] . (2)

According to the standard notation, is the speciÐcI
xk(q)intensity of the radiation Ðeld at the mean optical depth q, x

is the frequency displacement from the line center in
Doppler width units, and k is the cosine of the angle
between the photonÏs direction and the outward normal k.
The quantity is the absorption-line proÐle, normalized tor

xunity.
In the case of an atomic model consisting of only two

bound levels (two-level atom), and assuming complete
redistribution (CR) in the line proÐle, the frequency-
independent line source function is

S(q)\ eB(q) ] (1 [ e)Jr(q) , (3)

where is the scattering integral,Jr

Jr(q) \ 12
P
~1

1
dk
P
~=

`=
dx r

x
I
xk(q) , (4)

which accounts for the angle and frequency coupling of the
speciÐc intensities at the given depth point q. The branching
ratio between the thermal (LTE) contribution B(q) and the
scattering term is represented by the non-LTE parameterJre. The latter depends on the local properties of the medium,
so that it may be a function of the optical depth q as well.
The same holds true for the absorption proÐle coefficient

which in some cases may also depend on the direction k.r
x
,
Finally, the speciÐc intensities incident onto the bound-

ary surfaces are given data of the problem. They furnish the
corresponding initial conditions for namely,equation (2),
the known values of the down-going intensities incident
onto the upper boundary surface q\ 0 : I

xk(q\ 0)
([1 ¹ k \ 0), and the up-going intensity incident onto the
lower boundary surface, q\ T : (0 \ k¹ 1). AsI

xk(q\ T ),
is customary, we use the notation and for the up-I

xk` I
xk~going and down-going intensities, respectively, where k now

ranges from 0 to 1.
For the sake of simplicity, in the presentation of the new

method we consider the case of a proÐle independent of
both q and k. The application to the most general case is
straightforward, because the di†erence is only in the
numerical computation of the optical distance between
pairs of depth points for any given frequency x and direc-
tion k.

The numerical solution of the RT can beequation (2)
directly achieved by means of either di†erential or integal
methods (see As is customary, the Ðrst stepMihalas 1978).
toward a numerical solution is to consider at eachI

xkB (q)
depth q over a Ðnite grid of ND directions and NF fre-k

iquency points Then the integrals in the scattering termx
j
.

are replaced by the corresponding quadrature sums,Jr(q)with proper integration weights. Therefore, we consider
only for the discrete set of speciÐc intensitiesequation (2)

with directions i \ 1, ND, and frequencies j \ 1, NF.k
i
, x

j
,

The numerical solution of the set of equations needs the(2)
discretization of the depth variable too. Thus we evaluate
all the relevant depth-dependent functions only on a Ðnite
grid of mean optical depth values L \ 1, NL . It holdsq

L
,

that at the surface, and at the bottom.q1\ 0 q
NL

\ T

3. THE "-ITERATION

The most straightforward iterative procedure to solve the
two-level atom problem is the so-called "-iteration, which
solves in turn the RT equation and the statistical(eq. [2])
equilibrium equations, the latter leading in this case directly
to the source function given by equation (3).

Starting from a current solution S0(q) of the source func-
tion, we compute the frequency-integrated mean intensity

either by means of equations and within aJr(q), (2) (4)
di†erential approach or by means of an integral operator
like that deÐned by within an integralequation (5)
approach. Then the updated values Sn(q) of the source func-
tion are computed via This may be representedequation (3).
by the following sequence : S0(q) ] I

xk(q) ] Jr(q) ] Sn(q).
The di†erential approach, which uses a Ðnite-di†erence

form of is one of the most general and Ñexibleequation (2)
methods used to solve the aforementioned problem.
However, the integral formalism which employs the "-
operator to represent the formal solution of the(Hopf 1934)
transfer equation,

Jr(qL)\ "(q
L
, q

l
) S(q

l
) , (5)
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is also in current use (for the line formation problem see
& Loeser, The aforementioned iterativeAvrett 1969).

sequence is named "-iteration after the "-operator, what-
ever the actual method employed for the solution of the RT
equation.

But, irrespective of the approach chosen, the convergence
of this straightforward procedure in practical computations
is too slow to be useful for systems that are optically thick.

Let us now comment upon the construction of the
operator. From a prescribed functional form for"(q

L
, q

l
)

S(q), one can write, for all the values of the opticalq
Ldepth grid, linear relations for the speciÐc intensities I

xk(qL),and consequenty for the frequency-integrated mean inten-
sity as a function of the unknown values of the sourceJr(qL),function S(q

L
).

In order to do this in the frame of the classical product
integration method & Loeser a polynomial(Avrett 1969),
representation of S(q) on each subinterval must be(q

L~1, qL)assumed. As the RT is a typical integrodi†erential, second-
order problem, a piecewise quadratic approximation for
S(q) is necessary from the mathematical point of view and
sufficient from the numerical point of view. Of course, it is
important to ensure that the variation of the function
between each two successive depth points is not(q

L~1, q
L
)

too abrupt. Between the last two depth points (q
NL~1, q

NL
),

it is necessary to use a linear approximation.
Although in this paper we do not employ any "-operator,

our implicit treatment of the RT problem is based on the
above functional representation of S(q).

4. A SEMI-IMPLICIT "-ITERATION

This section has two purposes : to discuss an improved
"-iteration method with results better than those of ordi-
nary "-iteration by only a factor of 2, and to introduce the
germ of the new method that we present in ° 5.

The existence of two separate families of boundary condi-
tions naturally suggests the separate description of the pro-
pagation of the up-going intensities with initialI

xk` (q),
conditions at and that of the down-going inten-q

NL
4 T ,

sities with initial conditions at q\ 0. This recalls theI
xk~ (q),

basic idea of a forth-and-back scheme.
Consequently, we can deÐne the corresponding mean

intensities :

Jr`(q) \
P
0

1
dk
P
~=

`=
dx r

x
I
xk` (q) (6a)

and

Jr~(q) \
P
0

1
dk
P
~=

`=
dx r

x
I
xk~ (q) . (6b)

Therefore, according to we haveequation (4),

Jr(q) \ 12[Jr`(q) ] Jr~(q)] . (7)

On the basis of this physical discrimination, we can seek
new, more efficient iterative strategies. The Ðrst and most
obvious one is a semi-implicit "-iteration, which works
according to the following scheme.

We assume, as in ordinary "-iteration (cf that a° 3),
current estimate of the source function, S0(q), is known at all
the optical depths Thus, it is straightforward to computeq

L
.

explicitly in the Ðrst part of each iteration the down-going
intensities by solving the relevant RT equations withI

xk~ (q
L
)

a known source function, either in the di†erential or in the
integral for, and, successively, the corresponding frequency-
integrated mean values (cfJr~(q

L
) eq. [6b]).

Once has been explicitly evaluated at each depth,Jr~(q
L
)

we can compute the up-going intensities in the second part
through an implicit procedure.

From the integral form of the RT equation for the
up-going intensities, we can write, for the generic layer
(q

L
, q

L`1),

I
xk` (q

L
)\ I

xk` (q
L`1) e~*qrx@k]

P
qL

qL`1
S(t) e~(t~qL)rx@k r

x
k

dt .

(8)

By assuming piecewise parabolic behavior for the source
function, it is easy to derive the coefficients andp

xk1`, p
xk2`,

of the unknown values of and inq
xk` S(q

L
), S(q

L`1), S@(q
L`1)the relation

I
xk` (q

L
)\ I

xk` (q
L`1) e~*qrx@k] p

xk1`S(q
L
)

] p
xk2`S(q

L`1) ] q
xk` S@(q

L`1) . (9)

These coefficients, together with the exponential exp
are the basic building blocks of the local([*qr

x
/k),

implicit scheme. They depend only on the known slantout
optical distances with Here and in*qr

x
/k, *q4 q

L`1 [ q
L
.

the following, the prime denotes derivatives with respect to
q.

We start from the bottom layer The incident(q
NL~1, qNL

).
up-going intensities are given data of the problem,I

xk` (q
NL

)
and consequently is also known. As hasJr`(q

NL
) Jr~(q

NL
)

been already computed in the Ðrst part of the iteration, we
obtain from and hence the value of theJr(qNL

) equation (7),
new source function Sn(q

NL
).

Because of the assumed linear behavior of S(q) in the last
layer the derivatives at the two limiting points(q

NL~1, q
NL

),
of this interval are given by the relation

S@(q
NL

) \ S@(q
NL~1) \ [S(q

NL
) [ S(q

NL~1)]/*q . (10)

Therefore, particularizes intoequation (9)

I
xk` (q

NL~1) \ I
xk` (q

NL
) e~*qrx@k] P

xk1`S(q
NL~1)] P

xk2`S(q
NL

) .

(11)

Of course, the coefficients and are easily derivedP
xk1` P

xk2`from and previously computed, by takingp
xk1`, p

xk2`, q
xk` ,

into account equation (10).
Because is a datum of the problem, and the valueI

xk` (q
NL

)
of has already been computed, we can castS(q

NL
) equation

in the form(11)

I
xk` (q

NL~1) \A
xk` ]B

xk` S(q
NL~1) , (12)

where the coefficients and are easily derived. AfterA
xk` B

xk`numerical integration over all frequencies and directions (cf.
we obtain the coefficients a` and b` of the expres-eq. [6a]),

sion

Jr`(q
NL~1)\ a`] b`S(q

NL~1) . (13)

At this stage, is already known from the ÐrstJr~(q
NL~1)part of the current iterative step, and is implicitlyJr`(q

NL~1)known in terms of the as yet unknown value of (seeS(q
NL~1)
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FIG. 1.ÈEvolution with iterations of the computed source function for
a two-level atom with e \ 10~4. The solid lines, labeled with the relevant
iteration number, correspond to forth-and-back implicit "-iteration (see
° 5). The dashed and dot-dashed lines correspond to the 1000th iteration of
the semi-implicit "-iteration (cf and the ordinary "-iteration (cf.° 4) ° 3),
respectively.

By using we can express ineq. [13]). equation (7), Jr(qNL~1)the form

Jr(qNL~1)\ a
NL~1] b

NL~1S(q
NL~1) . (14)

Again, the numerical values of the coefficients anda
NL~1are easily derived. This relation, together with theb

NL~1deÐnition of as in lead to the newS(q
NL~1), equation (3),

numerical value of Sn(q
NL~1).Once the values of and are known, theSn(q

NL
) Sn(q

NL~1)derivatives at and are given by Theq
NL~1 q

NL
equation (10).

values of are straightforwardly obtained byI
xk` (q

NL~1)means of equation (12).
Then the previous elimination scheme can be repeated for

all the successive layers sweeping upward from(q
L
, q

L`1),L \ NL [ 2 up to L \ 1. The known output from the pre-
vious layer i.e., and(q

L`1, qL`2), I
xk` (q

L`1), S(q
L`1), S@(q

L`1),is the necessary and sufficient input for the treatment of the
succeeding layer where, via we can(q

L
, q

L`1), equation (9),
derive the coefficients and of an equation likeA

xk` B
xk`at any and eventually obtain the values ofequation (12) q

L
,

the coefficients and of a linear relation likea
L

b
L

equation
(14) :

Jr(qL)\ a
L
] b

L
S(q

L
) . (15)

By now taking into account we obtain theequation (3),
new value of the source function atSn(q

L
) q

L
.

Just a minor di†erence arises in the way of computing
must be replaced byS@n(q

L
). Equation (10)

S@(q
L
) \ 2[S(q

L`1)[ S(q
L
)]/*q[ S@(q

L`1) , (16)

which follows from the assumed piecewise parabolic behav-
ior of S(q).

In the above scheme, we assumed that both I
xk~ (q\ 0)

and were known data of the problem. This doesI
xk` (q\ q

NL
)

not hold true, however, in some cases, e.g., in the important
one of a semi-inÐnite atmosphere. In this instance, the
intensities incident on the last layer are not explicitly

FIG. 2.ÈSame as but for the case with e \ 10~8Fig. 1,

known. However, at large optical depth the so-called di†u-
sion approximation holds for the speciÐc intensity. Namely,

can be expressed as a linear combination ofI
xk` (q

NL
) S(q

NL
)

and Thus, results as a linear combination ofS@(q
NL

). Jr(qNL
)

and after we have eliminated byS(q
NL

) S(q
NL~1), S@(q

NL
)

means of A similar linear form forequation (10). Jr(qNL~1)is derived by starting from The values ofequation (11).
and are straightforwardly derived fromSn(q

NL~1) Sn(q
NL

)
equation (3).

It is self-evident that the ease of use of this semi-implicit
"-iteration is the same as that of the classical one. The
distinctive di†erence is brought about by the fact that the
former uses the updated values of the source function in
order to compute the up-going intensities.

This approach is similar to that of the Gauss-Seidel
method discussed by Bueno & Fabiani BendichoTrujillo

However, the way of computing the values of(1995). I
xk` (q

L
)

is di†erent. There, the intensities were computed by means
of a di†erential operator expressed by a three-point di†er-
ence formula, which may introduce minor numerical diffi-
culties, since such a formula needs the value of thatS(q

L`1)has just been recomputed, that of which is actuallyS(q
L
)

computed, and that of whose removal requires aS(q
L~1),global treatment of all the values of MS(q

L
)N.

On the contrary, the integral method proposed here is a
two-point algorithm that works by taking into account the
values of both the source function and its Ðrst derivative on
pairs of successive depth points.

However, the improvement in terms of rate of con-
vergence brought about by this ““ half ÏÏ "-iteration is not
substantial. With respect to classical "-iteration, only a
factor of about 2 is gained, which is, of course, not enough
(See Figs. and1 2.)

5. IMPLICIT "-ITERATION

The conclusion of is that although better than that of° 4
the ordinary "-iteration by a factor of 2, the rate of con-
vergence of semi-implicit "-iteration is still exceedingly
slow. Therefore, we must explore the possibility of further
acceleration.

In their work already mentioned in Bueno &° 4, Trujillo
Fabiani Bendicho introduce a successive overrelaxa-(1995)
tion (SOR) method in order to achieve a faster iterative
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procedure. However, the value of the relaxation parameter
u that optimizes the iterative procedure is known for a few
structured problems only. In more complicated problems, a
fairly sophisticated eigenvalue analysis may be necessary in
order to determine, case by case, the optimum value of u (cf.

& Van Loan ° 10.1).Golub 1983,
On the contrary, we achieve here a substantial improve-

ment of the rate of convergence by fully exploiting the idea
of an implicit representation of the source function in the
computation of both the up-going and the down-going
intensities.

In semi-implicit "-iteration, we store the numerical
values of the down-going mean intensities computedJr~(q),
from the known values S0(q) of the current estimate of the
source function. Alternatively, in forth-and-back implicit "-
iteration, we shall use the old values of the source function
to compute and store, for each L (L \ 1, NL ), the coeffi-
cients and of the linear relationb

L
~ c

L
~

Jr~(q
L
) \ b

L
~S(q

L
)] c

L
~S@(q

L
) , (17)

which represent implicitly the values of the down-going
mean intensities. The way of computing the coefficients of

is straightforward and will be described inequation (17)
These coefficients are used later in the succeeding° 5.1.

backward process.
We show in what follows that the results lead to a new

method whose rate of convergence is extremely high.
Perhaps it is worth stressing that the implementation of this
new method comes from physical considerations, not from
a previous spectral analysis of the mathematical properties
of the problem.

The operative scheme of the new method is essentially the
same as that of semi-implicit "-iteration, which in turn is
the same as that of ordinary "-iteration. T he fundamental
improvement is the way of storing the information relevant to

(cf. in the Ðrst part of each iterative step.Jr~(q) eq. [17])

5.1. T he Forward Process
We start at the upper boundary surface L \ 1, where the

values of are given data of the problem. Then weI
xk~ (0)

obtain directly from the correspondingequation (6b)
known value

Jr~(q1) \ a1~ . (18)

Usually it holds that a1~ \ 0.
At all successive optical depths with L [ 1, the formalq

L
,

solution of the RT equation for the down-going intensities
reads :

I
xk~ (q

L
) \ I

xk~ (q
L~1) e~*qrx@k]

P
qL~1

qL
S(t) e~(tL~t)rx@k r

x
k

dt .

(19)

As in the assumption of parabolic behavior for S(q) in° 4,
the interval allows us to write(q

L~1, qL)

I
xk~ (q

L
)\ I

xk~ (q
L~1) e~*qrx@k

] p
xk1~S(q

L~1) ] p
xk2~S(q

L
) ] q

xk~ S@(q
L
) . (20)

The coefficients and another set of basicp
xk1~, p

xk2~, q
xk~ ,

building blocks of the scheme, are easily derived.

The explicit numerical value of is the result ofI
xk~ (q

L~1)the previous recursive application, from the layer (q1, q2)down to the layer of in which we(q
L~2, qL~1), equation (20),

have used the known values of the set l \ 1, L [ 1NMS0(q
l
) ;

as well as those of the derivatives l \ 1, L [ 1N.MS@0(q
l
) ;

Likewise, we use the values for inS0(q
L~1) S(q

L~1) equation
Consequently, by grouping together the known terms(20).

we can rewrite in the formequation (20)

I
xk~ (q

L
) \A

xk~ ]B
xk~ S(q

L
)]C

xk~ S@(q
L
) , (21)

where the coefficients and replace andB
xk~ C

xk~ p
xk2~ q

xk~ ,
respectively, and it holds that

A
xk~ \ I

xk~ (q
L~1) e~*qrx@k] p

xk1~S0(q
L~1) . (22)

By integrating over frequencies and directions, we obtain
the relation

Jr~(q
L
)\ aü

L
~] bü

L
~S(q

L
) ] cü

L
~S@(q

L
) . (23)

We wish to stress that the coefficients and inp
xk1~, p

xk2~, q
xk~and consequently and inequation (20), B

xk~ C
xk~ equation

hence and in do not depend on the(21), bü
L
~ cü

L
~ equation (23),

values of S0(q). They depend only on the optical distance
*q(L [ 1, L ). On the contrary, the coefficient dependsaü

L
~

linearly on the values of S0(q) for all the optical depths with
Because numerically the set of derivativesq\q

L
. MS@0(q

l
)N

depends linearly on the set one easily realizes thatMS0(q
l
)N,

and consequently the coefficient are linearI
xk~ (q

L~1), aü
L
~,

combinations of the set l \ 1, L [ 1N. In principle,MS0(q
l
) ;

we could store the coefficients and evaluated ataü
L
~, bü

L
~, cü

L
~,

each depth point for further use in the backward processq
L
,

of computation of the new values of S(q
L
).

But, in the recomputation of the new values andSn(q
L
)

a mismatch might occur at the curve S0(q) forS@n(q
L
), q

L
:

used to compute and the updated curve Sn(q) forq¹ q
L
, aü

L
~,

might have di†erent values at Thus, a moreqº q
L
, q

L
.

correct computation of in accordance with this updatedaü
L
~

value of can be reached by scaling the function S0(q)Sn(q
L
)

for by the factor This will be automati-q¹ q
L

Sn(q
L
)/S0(q

L
).

cally performed in the backward process, provided we store
in the forward process, instead of the coefficients aü

L
~, bü

L
~,

and the new ones and of the revised relationshipcü
L
~, b

L
~ c

L
~

anticipated in equation (17) :

Jr~(q
L
) \ b

L
~S(q

L
) ] c

L
~S@(q

L
) ,

namely, the relationship that carries on the information rel-
evant to It holds thatJr~(q

L
).

b
L
~\ bü

L
~] aü

L
~/S0(q

L
) , (24a)

c
L
~\ cü

L
~ . (24b)

The procedure is repeated until L \ NL .

5.2. T he Backward Process
The backward process is, in practice, the same as in ° 4.

At the bottom, is directly known from the corre-Jr`(q
NL

)
sponding boundary conditions. By taking into account

for we obtain a similar relation forequation (17) Jr~(q
NL

),
from which, after we have eliminated the derivativeJr(qNL

),
by means of we can easily derive theS@(q

NL
) equation (10),

coefficients and of the relationshipa
NL

, b
NL

, c
NL

Jr(qNL
) \ a

NL
] b

NL
S(q

NL
) ] c

NL
S(q

NL~1) . (25)

i.e., the RT equation for the out-going inten-Equation (11),
sity between and allows us to expressq

NL~1 q
NL

, Jr`(q
NL~1)
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as a linear combination of and whose coeffi-S(q
NL

) S(q
NL~1),cients are known. On the other hand, togetherequation (17)

with allows us to express also as aequation (10), Jr~(q
NL~1)linear combination of and ConsequentlyS(q

NL
) S(q

NL~1).can be expressed in the same form asJr(qNL~1) equation
(25) :

Jr(qNL~1) \ a
NL~1] b

NL~1S(q
NL

) ] c
NL~1 S(q

NL~1) .

(26)

By substituting equations and in the deÐnition of(25) (26)
the source function (see at and respec-eq. [3]) q

NL
q
NL~1,tively, we are left with a system of two linear algebraic

equations in the two unknowns and fromS(q
NL

) S(q
NL~1),which we easily derive the updated values of andSn(q

NL
)

Sn(q
NL~1).The values of the derivatives and areS@(q

NL
) S@(q

NL~1)trivially derived from It is straightforward toequation (10).
compute fromI

xk` (q
NL~1) equation (11).

The continuation of the backward process from q
NL~1through is obvious. For each layer the numeri-q1 (q

L
, q

L`1),cal values of and are known fromS(q
L`1), S@(q

L`1), I
xk` (q

L`1)the treatment of the previous layer.
The coefficients and for in areb

L
~ c

L
~ J~(q

L
) equation (17)

known from the forward process. By using toequation (16)
express in terms of the thus far unknown value ofS@(q

L
) S(q

L
)

and the known values of and we can writeS(q
L`1) S@(q

L`1),as a linear function of only.Jr~(q
L
) S(q

L
)

By integration of the formal solution for as givenI
xk` (q

L
),

by and by taking into account the fact that allequation (9),
the terms except are known, a similar expression forS(q

L
)

is easily derived.Jr`(q
L
)

Consequently, we obtain the required linear relation
between and the same as thatJr(qL) S(q

L
), equation (15),

together with allows us to derive the new valueequation (3),
of and successively that of In such a way, theSn(q

L
) S@n(q

L
).

step is closed, and we can proceed upward.

6. COMPARATIVE RESULTS AND CONVERGENCE

PROPERTIES

In order to test the new method proposed in we° 5,
applied it to the two-level atom problem described in ° 2.
This represents the ideal test case for checking the numeri-
cal accuracy of any algorithm employed to solve the RT
equation, because its exact solution has been known for
many years. (See, e.g., &Sobolev 1956 ; Case 1957 ; Avrett
Hummer 1965 ; Ivanov 1969.)

As at Ðrst instance, we considered a medium of constant
properties, whose only opacity source is the line itself,
without an overlapping continuum. In this case, due to the
assumed zero gradient of the Planck function B(q), the
features of the solution, namely, the value of the source
function at the surface and its characteristic scale (i.e., the
depth of thermalization), depend only on the non-LTE
parameter e.

In typical non-LTE problems, the value of e is very small
For this reason numerical errors can easily blur([10~4).

the solution. In order to test the capability of the method
and to check the accuracy of the solutions, we selected two
cases with e equal to 10~4 and 10~8, respectively.

Figures and show the evolution with iterations of the1 2
source function computed. One can see at once that, in a
very small number of iterations (of the order of 10È15),
forth-and-back implicit "-iteration furnishes numerical

FIG. 3.ÈRelative error for the iterations 6È14 of the source function
S(q), shown in Fig. 2.

results that practically coincide with the exact solution. For
comparisonÏs sake, we also plotted the values of the source
function after 1000 iterations, obtained both with classical
"-iteration and with semi-implicit "-iteration (cf. The° 4).
rate of convergence of the latter is higher by a factor of 2,
but in both cases the convergence is unacceptably slow.

By comparison of our results (achieved with the same
number of discrete ordinates for directions and frequencies)
with the exact solution, by & HummerSex(q), Avrett (1965),
we are in a position to plot the percent relative error on S(q)
at each iteration run.

In Figures and we show (on di†erent scales on the3 4
ordinate) the errors corresponding to iterations 6È14 for the
case with e \ 10~8. For the case with e \ 10~4, the errors
are slightly smaller.

For the same two cases, we compare in someTable 1
parameters suitable for the study of the convergence
properties of the method. First of all, we consider the abso-
lute value of the maximum relative errors whicho*Sn o

M
,

corresponds to the maximum value in Figures and as3 4,
well as the absolute value of the maximum of the relative
correction between two successive runs of iteration.o dSn o

M

FIG. 4.ÈZoom of to render appreciable the evolution of theFig. 3,
relative error along the last iterations.
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TABLE 1

CONVERGENCE PROPERTIES OF THE IMPLICIT "-ITERATION METHODa

Iteration o*Sn o
M

o dSn o
M

p *Sn p2 p dSn p2 p En p2
e \ 10~4

1 . . . . . . . 772.944 92.412 33.242 66.228 . . .
2 . . . . . . . 199.491 68.386 14.084 17.453 23.698
3 . . . . . . . 69.860 46.182 6.652 7.185 12.212
4 . . . . . . . 27.422 27.208 3.241 3.370 6.347
5 . . . . . . . 11.075 14.420 1.570 1.674 3.328
6 . . . . . . . 4.359 7.058 0.734 0.847 1.716
7 . . . . . . . 1.682 3.188 0.326 0.423 0.844
8 . . . . . . . 0.969 1.385 0.134 0.210 0.419
9 . . . . . . . 0.808 0.603 0.061 0.099 0.189

10 . . . . . . . 0.541 0.485 0.043 0.047 0.088
11 . . . . . . . 0.344 0.369 0.036 0.025 0.053
12 . . . . . . . 0.200 0.239 0.028 0.017 0.053
13 . . . . . . . 0.124 0.141 0.021 0.013 0.051
14 . . . . . . . 0.077 0.091 0.016 0.009 0.038
15 . . . . . . . 0.077 0.074 0.012 0.007 0.024
16 . . . . . . . 0.075 0.057 0.010 0.005 0.017
17 . . . . . . . 0.073 0.041 0.009 0.004 0.014
18 . . . . . . . 0.067 0.025 0.009 0.003 0.012
19 . . . . . . . 0.058 0.020 0.010 0.002 0.010
20 . . . . . . . 0.055 0.016 0.010 0.001 0.007

e \ 10~8

1 . . . . . . . 13587.700 98.810 28.880 76.497 . . .
2 . . . . . . . 1131.210 91.709 10.535 16.990 21.841
3 . . . . . . . 227.688 74.742 4.382 5.974 9.214
4 . . . . . . . 70.859 49.401 1.868 2.481 4.243
5 . . . . . . . 26.521 27.296 0.785 1.077 1.902
6 . . . . . . . 10.645 13.494 0.321 0.463 0.813
7 . . . . . . . 4.466 6.194 0.129 0.192 0.328
8 . . . . . . . 1.794 2.835 0.050 0.080 0.328
9 . . . . . . . 0.716 1.282 0.019 0.032 0.053

10 . . . . . . . 0.354 0.592 0.006 0.014 0.026
11 . . . . . . . 0.316 0.267 0.005 0.007 0.014
12 . . . . . . . 0.243 0.169 0.006 0.004 0.007
13 . . . . . . . 0.192 0.114 0.007 0.002 0.006
14 . . . . . . . 0.155 0.091 0.007 0.001 0.004
15 . . . . . . . 0.149 0.069 0.008 0.001 0.004
16 . . . . . . . 0.142 0.049 0.008 0.001 0.003
17 . . . . . . . 0.136 0.037 0.008 0.001 0.003
18 . . . . . . . 0.128 0.027 0.008 0.000 0.002
19 . . . . . . . 0.120 0.019 0.008 0.000 0.001
20 . . . . . . . 0.120 0.014 0.008 0.000 0.001

NOTE.ÈCol. 1 : Iteration number. Col. 2 : Absolute value of the
maximum relative error. Col. 3 : Absolute value of the maximum of the
relative correction. Col. 4 : Quadratic average of the relative error. Col. 5 :
Quadratic average of the relative correction. Col. 6 : Quadratic correc-
tion ratio.

a All quantities are in percent.

Furthermore, we evaluate the quadratic average over the
full optical depth interval of the relative error and the rela-
tive correction, respectively :

p *Sn p2\
GP

0

T
[Sn(q) [ Sex(q)]2 d ln q

NP
0

T
[Sex(q)]2 d ln q

H1@2

(27)

and

p dSn p2

\
GP

0

T
[Sn(q) [ Sn~1(q)]2 d ln q

NP
0

T
[Sn~1(q)]2 d ln q

H1@2
.

(28)

Finally, taking into account a previous suggestion by L.
Auer (1993, private communication) also Fabiani-Auer,
Bendicho, & Trujillo-Bueno we also consider the1994),
quadratic correction ratio :

p En p2 \ p dSn p2
1 [ p dSn p2/p dSn~1 p2

. (29)

From global inspection of the tabulated parameters, the
excellent convergence properties of the forth-and-back
implicit "-iteration come into view. After a comparative
analysis of the run with iterations of the single parameters,
we choose, as the best criterion to stop the run of iterations,
the tolerance condition that the maximum value of the rela-
tive correction of Sn(q) between two successive iterations be
of the order of 0.1%.

Because of the nature of the method, simple precision is
enough for most of the actual computations. Of course,
when the value of the parameter e is smaller than the com-
puterÏs intrinsic round-o† error, the use of double precision
becomes necessary in order to prevent spurious contribu-
tions to the sources, as in the case of our test with e \ 10~8.

Finally, we wish to call the readerÏs attention to the
asymptotic behavior of the residual error with theo*S o

Mnumber of iterations. shows clearly that furtherTable 1
iterations cannot reduce its value. This has to be ascribed to
the unavoidable errors brought about by the discretization
of the optical depth scale. The results displayed, obtained
with 15 points per decade, show a maximum residual error
of about 0.1%. With 10 points per decade, can be ofo*S o

Mthe order of 0.3, and with 5 points per decade it can grow
even to 1%.

7. THE PARTIAL REDISTRIBUTION PROBLEM

In this section, we apply the forth-and-back implicit
"-iteration method to the case of the two-level atom line
formation problem, in which partial redistribution is taken
into account.

In this case the source function, which is not frequency
dependent, takes the form

S
x
(q) \ eB(q)] (1 [ e)

P
~=

`=
dx@ R(x@, x) J

x{(q) , (30)

where is the speciÐc mean intensity at frequency x@,J
x{(q)and R(x@, x) is the redistribution operator. In the discrete

ordinates representation, the source function S
k
4 S

xkreads :

S
k
(q)\ eB(q) ] (1 [ e) ;

j
R( j, k) J

j
(q) , (31)

where the index j corresponds to that is, to the frequencyx
j
@ ,

of the absorbed photon.

7.1. T he Forward Process
Following the procedure already described in it is° 5.1,

straightforward to compute and store, for each frequency x
jand each optical depth the set of coefficients andq

L
, b

jL
~ c

jL
~

of the relationship

J
j
~(q

L
)\ b

jL
~ S

j
(q

L
) ] c

jL
~ S

j
@(q

L
) . (32)

That is, for each frequency we have a relation likex
j
,

equation (17).

7.2. T he Backward Process
Likewise, exactly as in we know for each layer° 5.2, (q

L
,

the updated values of and andq
L`1) I

xk` (q
L`1), S

j
n(q

L`1)
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FIG. 5.ÈEvolution with iterations of the frequency-dependent source
function S(x) at optical depth q\ 0, for a two-level atom line with a Voigt
absorption proÐle and the x) redistribution function. Ther

a
(x) RII(x@,

values of e and a are shown in the Ðgure.

for each frequency Thus, we can easily computeS
j
@n(q

L`1) x
j
.

the coefficients of a relation like for the out-equation (9)
going intensities By integrating over k, we obtain theI

xk` (q
L
).

coefficients and of the relationaü
jL
` bü

jL
`

J
j
`(q

L
)\ aü

jL
` ] bü

jL
` S

j
(q

L
) (33)

for all the frequencies x
j
.

After removing in by means ofS
j
@(q

L
) equation (32)
and are known at thisequation (16) [S

j
n(q

L`1) S
j
@n(q

L`1)stage], we obtin the coefficients and of the relationaü
jL
~ bü

jL
~

J
j
~(q

L
)\ aü

jL
~ ] bü

jL
~ S

j
(q

L
) . (34)

Equations and allow us to write the coefficients(33) (34)
and of the required relationshipa

jL
b
jL

J
j
(q

L
) \ a

jL
] b

jL
S
j
(q

L
) , (35)

which, replaced in equation (31), ensure a straightforward
computation of the updated values of the source function

and, from of the corresponding valuesS
k
n(q

L
) equation (16),

S
k
@n(q

L
).

Then the process is repeated upward.

FIG. 6.ÈSame as at optical depth q\ 1Fig. 5,

7.3. Results
We solved the RT for a two-level atom withequation (2)

a source function as in We used a Voigtequation (30).
proÐle with a \ 10~3 in the absorption coefficient,r

a
(x)

and the redistribution function x), which correspondsRII(x@,
to the angular mean redistribution function for the two-
level atom with an inÐnitely narrow ground level. Again, we
considered the two cases with e \ 10~4 and e \ 10~8,
respectively.

As in the previous case of complete redistribution, a small
number of iterations (13 and 15, respectively) are enough to
fulÐll the tolerance criterion introduced above, namely, that
the greatest relative correction (for all the frequencies and
optical depths) between two successive iterations be less
than 0.1%.

The results reproduce the well-known ones by Hummer
and In Figures and we show the(1969) Mihalas (1978). 5 6

evolution with the iterations of S(x) for the two optical
depths q\ 0 and q\ 1, respectively.

8. THE MULTILEVEL PROBLEM

In the most general case of a multilevel atom model, we
must solve an RT equation for each actual spectral line, i.e.,
for each allowed radiation transition between the levels
considered. These radiative transitions are coupled through
the level populations which are the solution of theMN

j
N,

statistical equilibrium (SE) equations describing the conser-
vation of the population of each level.

In the stationary case, the SE equations are linear alge-
braic equations for the set of level populations MN

j
N.

However, some of their coefficients include the frequency-
integrated means intensity of the line radiation Ðeld Jrij

,
relevant to the radiative transition i ] j. For each level j, we
may express the conservation of its population in theN

jform

;
i:j

[(N
i
C

ij
[ N

j
C

ji
) ] (N

i
B

ij
[ N

j
B

ji
)Jrij

[ N
j
A

ji
]

] ;
k;j

[(N
k
C

kj
[ N

j
C

jk
) [ (N

j
B

jk
[ N

k
B
kj
)Jrjk

] N
k
A

kj
]

\ 0 , (36)

where and are the Einstein coefficients of theB
ij
, B

ji
, A

jiradiative transitions considered, and and are theC
ij

C
jicorresponding collisional rates.

In turn, each of the integrated mean intensities Jrijdepends, via the corresponding RT equation, on the source
function i.e., on the level populations :S

ij
,

S
ij
\ g

ji
s
ij
\ N

j
A

ji
N

i
B

ij
[ N

j
B

ji
. (37)

In this way, the RT equation together with equations (36)
and represent a strong nonlinear and nonlocal problem.(37)
An iterative procedure becomes necessary. The straight-
forward "-iteration method, which solves the problem
by following the scheme MN

j
0N] MS

ij
N] MI

xk(i,has an impractically slow convergence.j)N] MJrij
N] MN

j
nN,

Alternatively, the iteration method proposed in this paper
can accelerate it without any difficulty.

8.1. Forth-and Back Implicit "-Interaction
The operative procedure for this problem is exactly the

same as in and We start with a known set of popu-°° 5 7.
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FIG. 7.ÈNormalized source functions corresponding to theS
jk
/B

jk
,

three lines of a three-level hydrogen atom within an isothermal atmo-
sphere. The log q scale on the abscissa has to be read, case by case, as the
mean line optical depth relevant to the transition considered.

lations i.e., with a set of known source functionsMN
j
0N,

and the corresponding Ðrst derivativesMS
ij
0(q)N (eq. [37])

MS@0(q)N for all the transitions i] j. As in the previous cases,
we repeat for each transition i ] j the entire forward process
and the backward process layer by layer up to in orderq

L
,

to obtain the coefficients and of the required relation :a
ij

b
ij

Jrij
\ a

ij
] b

ij
S
ij

. (38)

By replacing in with the expressionJrij
equation (36)

given by and taking into accountequation (38) equation
we can rewrite the generic SE equation for level j in the(37),

form

;
i;j

[(N
i
C

ij
[ N

j
C

ji
)] (N

i
B

ij
[ N

j
B

ji
)a

ij

] N
j
A

ji
b
ij
[ N

j
A

ji
]

] ;
k;j

[(N
k
C

kj
[ N

j
C

jk
) [ (N

j
B
jk

[ N
k
B
kj
)a

jk

[ N
k
A

kj
b
jk

] N
k
A

kj
]\ 0 (39)

That is, we recover a new linear system for the set of popu-
lations whose coefficients are quantities explicitlyMN

j
N,

known: the radiative and collisional coefficients and the
interation factors and As already shown inMa

ij
N Mb

ij
N. ° 5.2,

the latter are easily computed layer by layer.
The system of gives the updated values ofequations (39)

the populations The process is iterated to con-MN
j
nN.

vergence.

8.2. Results
In order to test the feasibility of the method when applied

to the multilevel case, we solved the same problem, namely,
a three-level hydrogen atom within an isothermal atmo-
sphere, as in & Loeser Our results, shown inAvrett (1987).

coincide with those from Avrett & Loeser withinFigure 7,
an absolute error never greater than 3%. The existing di†er-
ences are due to the unavoidable residual errors brought
about by the discretization in depth. In both cases, three
discrete optical depth points per decade were used.

The implicit "-iteration method requires only nine iter-
ations to fulÐll the usual tolerance criterion that the relative

di†erence (for the three source functions at all the optical
depths) between two successive iterations be less than 0.1%.

9. RECAPITULATIVE REMARKS

In this section we wish to comment upon the distinc-
tive features of forth-and-back implicit "-iteration. Let us
look back to the two-level atom problem (cf. It is° 2).
well known that the straightforward "-iteration

has an exceed-procedureÈS0(q) ] I
xk(q) ] Jr(q) ] Sn(q),

ingly slow rate of convergence in optically thick media.
However, one easily realizes that this direct iterative

scheme holds, from the previous iteration, more informa-
tion than necessary when dealing with the current iteration,
because it does not take full advantage of the linear com-
ponents of the problem. That is, in order to obtain the
updated values of the source function, Sn(q), ordinary "-
iteration computes the whole mean intensity from theJr(q)old values of S0(q).

Semi-implicit "-iteration, thanks to the forth-and-back
approach, computes from S0(q) only one-half of Jr(q),namely, the down-going component As already said,Jr~(q).
the improvement is not substantial. Yet, there is another
way of separating the part of that is computed fromJr(q)S0(q) from that which is treated implicitly. Operatively, we
can split into a local and nonlocal component :Jr(qL)

Jr(qL) \ Jrloc(qL)] Jrnloc(qL) . (40)

We choose the local term so that it depends linearlyJrloc(qL)on the unknown local values of and through aS(q
L
) S@(q

L
),

functional form like

Jrloc(qL) \ b
L
locS(q

L
) ] c

L
locS@(q

L
) , (41)

whose coefficients and are directly derived from theb
L
loc c

L
loc

integral form of the RT equation, thanks to the assumed
functional representation of S(q). (See They depend° 5.)
only on the known optical distances *q(L [ 1, L ) and
*q(L , L ] 1). Above all, they are independent of the trial
values S0(q). On the contrary, the nonlocal term Jrnloc(qL)depends on (and is to be computed from) the trial values of
S0(q).

Therefore, the values of the coefficients and areb
L
loc c

L
loc

known a priori for all the Then, at a Ðrst stage we canq
L
.

compute from i.e., the source function com-Jrnloc(qL) S0(q
L
),

puted in the previous step of iteration. Successively, by
taking into account the deÐnition of the source function (cf.

equations and and in ordereq. [3], (40) (41), equation (16),
to eliminate we obtain straightforwardly the updatedS@(q

L
),

source function Sn(q
L
).

However, the introduction of the forth-and-back
approachÈand the consequent split into a forward step
and a backward stepÈprovides a further improvement,
which comes from the fact that only half of the nonlocal
part of namely, the nonlocal part of is com-Jr(q), Jr~(q),
puted from the old values S0(q) when dealing with the
down-going directions in the forward step. Later, when
dealing with the up-going directions in the backward step,
the nonlocal part of is computed from the updatedJr`(q)
values Sn(q). In this way, a further reduction of the informa-
tion carried from the previous iteration over to the next one
is achieved.

We have reason to believe that the extremely good con-
vergence properties of forth-and-back implicit "-iteration
must be ascribed to the fact that the only quantity com-
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puted from the old values S0(q) of the source function, and
only for is the nonlocal part of The nonlocalq¹ q

L
, Jr~(q

L
).

part of as well as the local part of both andJr`(q
L
) Jr`(q

L
)

are computed at each depth from the updatedJr~(q
L
) q

Lvalues of Sn(q).
Besides the latter, another substantial improvement has

been introduced by the forth-and-back approach. When
computing, in the forward step, the nonlocal part of Jr~(q

L
),

the procedure actually employs not the old values S0(q) of
the source function (for but those of a current sourceq¹ q

L
)

function S*(q). The latter is a replica of S0(q), deÐned so that
it keeps the behavior of S0(q) but with values properly
scaled in order to match at the value of the updatedq

L
Sn(q

L
)

source function (cf. That is to say, the current source° 5.2).
function, actually used to compute the nonlocal part of

includes information from both the old source func-Jr~(q
L
),

tion S0(q) (its behavior for and the updated sourceq¹ q
L
)

function (its value at q
L
).

In other words, in the course of each iteration step, the
forth-and-back implicit "-iteration method retains, at each
depth the value of a single iteration factor : the ratio ofq

L
,

the nonlocal part of the down-going mean intensity to the
current source function This iteration factor, the onlyS0(q

L
).

piece of information retained from the current iteration, is
to be used later in the next step of iteration.
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APPENDIX

A SIMPLE EXAMPLE: THE MONOCHROMATIC TWO-STREAM SEMI-INFINITE CASE

In order to illustrate the numerical procedure of the method presented in this paper, we now consider the simplest case that
still retains the basic features of the two-level atom RT problem, namely, a semi-inÐnite, monochromatic case in which only
one outgoing intensity I` and one down-going intensity I~ are taken into account. (The two streams correspond to directions
with k \ ]1 and k \ [1, respectively.)

For this model, it holds that J`\ I` and J~\ I~, and consequently the source function [cf. reads :eq. (3)]

S \ eB] (1[ e)
I` ] I~

2
. (A1)

With no incident radiation at the surface, the down-going intensity at the second depth point is given by

I2~\
P
q1

q2
S(t) exp [[(q2[ t)]dt , (A2)

which reduces to

I2~\ a2~S1] b2~ S2] c2~S2@ , (A3)

under the assumption of parabolic behavior of S(q) over the interval (q1, q2).The coefficients of are given byequation (A3)

a2~\ 2
*2[ exp ([*)

A
1 ] 2

*
] 2

*2
B

. (A4a)

b2~\ 1 [ 2
*2[ exp ([*)

A
[ 2

*
[ 2

*2
B

, (A4b)

c2~\[ 1 ] 2
*

[ exp ([*)
A
1 ] 2

*
B

, (A4c)

with (The reader should note that the notation here is di†erent from that used in the main text of the paper.)*4 q2[ q1.Successively, is replaced by the current value and this term is multiplied by the scaling factor Thus, it holdsS1 S10, S2/S20.that

I2~ \ d2 S2] c2 S2@ , (A5)

with andd2\ b2~] (a2~S10)/S20 c2\ c2~.
Next by assuming again the parabolic behavior of S(q) between and we can replace by means ofq2 q3, S2@

I3~\ I2~ exp [[(q3[ q2)]] a3~ S2] b3~S3] c3~ S3@ , (A6)

that is,

I3~ \ d3 S3] c3 S3@ , (A7)
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where it holds that

d3\ b3~] 1
S30

Ma3~S20] I2~ exp [[(q3[ q2)]N . (A8)

In the value of is computed from using the current valus and This process is continuedequation (A8), I2~ equation (A5) S20 S2@0.until we determine the coefficients of the relationship

I
NL
~ \ d

NL
S
NL

] c
NL

S
NL
@ . (A9)

In this way, at the end of the forward process we have computed and stored the two set of coefficients and (L \ 2,Mc
L
N Md

L
N

NL ) which are to be used later in the backward step to determine the new values of starting with andS
L
, S

NL
S
NL~1.In order to compute and we assume, as a boundary condition, that S(q) is linear for so that onS

NL
, S

NL~1, I
NL
` q [ q

NL~1 ;
the interval it holds that(q

NL~1, qNL
)

S
NL~1@ \ S

NL
@ \ S

NL
[ S

NL~1
q
NL

[ q
NL~1

. (A10)

Consequently, we have

I
NL~1` \ S

NL~1 ] S
NL~1@ (A11a)

and

I
NL
` \ S

NL
] S

NL
@ . (A11b)

By recalling we can derive the two relationshipsequation (A1),

S
NL~1\ eB] 1 [ e

2
[(1] d

NL~1)SNL~1] (1] c
NL~1)SNL~1@ ] (A12a)

and

S
NL

\ eB] 1 [ e
2

[(1 ] d
NL

)S
NL

] (1 ] c
NL

)S
NL
@ ] . (A12b)

(The coefficients and were computed and stored in the forward step.) Now thanks to wec
NL~1, dNL~1, cNL

, d
NL

equation (A10),
can easily derive the numerical values of and and hence those of andS

NL
S
NL~1, S

NL
@ \ S

NL~1@ , I
NL
` , I

NL~1` .
The next step is to compute

I
NL~2` \ I

NL~1` exp [[(q
NL~1 [ q

NL~2)]] a
NL~2` S

NL~2] b
NL~2` S

NL~1] c
NL~2` S

NL~1@ . (A13)

Because of the parabolic approximation for S(q), the coefficients and are given bya
NL~2` , b

NL~2` , c
NL~2`

a
NL~2` \ 1 [ 2

*
] 2

*2[ exp ([*)
2
*2 , (A14a)

b
NL~2` \ 2

*
[ 2

*2[ exp ([*)
A
1 [ 2

*2
B

, (A14b)

and

c
NL~2` \ [1 ] 2

*
[ exp ([*)

A
1 ] 2

*
B

, (A14c)

with *4 q
NL~1 [ q

NL~2.As the numerical values of and are known, can be cast in the formS
NL~1 S

NL~1@ equation (A13)

I
NL~2` \ p

NL~2] q
NL~2S

NL~2 . (A15)

From the forward step we have the numerical values of coefficients and of the relationshipc
NL~2 d

NL~2
I
NL~2~ \ d

NL~2S
NL~2] c

NL~2S
NL~2@ , (A16)

in which, according to our assumption of piecewise parabolic behavior for S(q), it holds that

S
NL~2@ \ 2

S
NL~1[ S

NL~2
q
NL~1[ q

NL~2
[ S

NL~1@ . (A17)

Because the values of and are known, (cf. [A16] can be cast in the formS
NL~1 S

NL~1@ I
NL~2~ eq. )

I
NL~2~ \ v

NL~2 ] t
NL~2 S

NL~2 . (A18)
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Now equations and allow us to write :(A15) (A18)

J
NL~2 \ a

NL~2 ] b
NL~2S

NL~2 . (A19)

By recalling the deÐnition of the source function (see we easily derive the numerical value of andeq. [A1]), S
NL~2,consequently that of (seeI

NL~2` eq. [A15]).
This procedure is iterated until is computed.S1
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